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ABSTRACT 

The parametric instability of thin simply supported laminated composite cylindrical shells under harmonically-

varying in-plane loads is investigated. Dynamic instability analysis based on classical linear theories provided only 

an outline of the parameter regimes where nonlinear effects are of importance. Linear analysis carried out in available 

literature can only provide the information about the instability region and unable to predict the vibration amplitudes 

in these regions. In this work, to determine such vibration amplitudes as well as dynamically-unstable regions, Von-

Karman-type of nonlinearity is taken into the account in the equations of motion. The procedure implemented in this 

work is based on using Airy’s stress function and by combining the mid-plane strains, the nonlinear compatibility 

equation is derived. Consequently, by satisfying the two in-plane force-equilibrium equation, the general Galerkin 

method is used for the moment-equilibrium equation of motion according to the Donnell’s shallow-shell theory to 

satisfy spatial dependence in the partial differential equation of motion to produce a set of non-linear Mathieu-Hill 

equations. These equations are ordinary differential equations, with time-dependency. By applying the Bolotin’s 

method to these equations, the dynamically-unstable regions, stable-, and unstable-solutions amplitudes of the steady-

state vibrations are obtained. Numerical results are also presented to bring out the influence of various parameters 

such as magnitude of both tensile and compressive axial loads, radius-to-thickness ratio and length-to-radius ratio as 

well, on the dynamic instability behavior of the studied laminated composite cylindrical shell. 

1  INTRODUCTION  

Shell structures are used in a multitude of thin-walled lightweight load bearing structural parts for various modern 

aerospace, offshore, nuclear, automative, and civil engineering structures. One of the main targets in the design of 

shell structural elements is to make the thickness as thin as possible to make the structure light. On the other hand 

composite structures are also increasingly being used in aerospace, mechanical and automative industries due to their 

high-strength-to-weight and stiffness-to-weight ratios. Acknowledging to the difficulty of analysis of shells related to 

the curvature the variation of material properties due to composite bring more complexity for the mechanical behavior 

of lamented composite shells. For their thin nature, they can present large deflections, with respect to the shell 

thickness, associated to small strains before collapse. Also shells are often subjected to dynamic loads that causes 

vibrations; vibration amplitude of the order of the shell thickness can be easily reached in many applications. Hence, 

for more perfect and complete studies of dynamic instability of laminated plates, the nonlinear analysis is required. 

When the lightweight structural components are subjected to dynamic loading particularly periodic in-plane loads, 

when the frequency of in-plane dynamic load and the frequency of vibration satisfy certain specific condition, 

parametric resonance will occur in the structure, which makes the shell to enter into a state of dynamic instability [1]. 

This instability is of concern because it can occur at load magnitudes that are much less than the static buckling load, 
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so a component designed to withstand static buckling may fail in a periodic loading environment. Further, the dynamic 

instability occurs over a range of forcing frequencies rather than at a single value [1, 2]. A comprehensive study of 

the dynamic instability of the elastic systems, such as rods, plates and shells subjected to periodically varying loads 

has been given in the text by Bolotin [3]. The intensive use of fiber-reinforce composites has resulted lately in several 

studies of the dynamic instability of laminated shells and plates. Most of these works are based on linear analysis and 

so leads to only predicting the dynamic instability regions [4-8]. All these mentioned works are based on linear 

analysis and so lead to the determination of dynamic instability regions and unable to predict the vibration amplitudes 

in these regions. 

In the present work, the instability regions as well as the both stable- and unstable- solutions amplitudes 

of steady-state vibrations are determined based on Donnell’s nonlinear large deflection shell equations of 

motion which lead to a system of nonlinear Mathieu-Hill equations. The effect of magnitude of both tensile 

and compressive axial periodic loadings, aspect ratios i.e. radius-to-thickness ratio and length-to-radius ratio as 

well, on the dynamically-unstable regions and the amplitudes of the steady-state vibrations are investigated. 

 

2 FORMULATION OF THE PROBLEM AND SOLUTION 

A thin simply supported laminated composite cylindrical shell, having length 𝐿 and radius 𝑅 with respect to the 

curvilinear coordinates (𝑋, 𝜃, 𝑍)which are assigned in the mid-surface of the shell is considered as shown in Fig.1. 

Here, 𝑢, 𝑣 and 𝑤 are the displacement components of the shell with reference to this coordinate system in the 𝑋, 𝜃, 𝑍, 

directions, respectively. 
 

 

Figure 1. The geometry of a laminated composite cylindrical shell and the cross-sectional view. 

 

The cylindrical shell is subjected to a periodically pulsating load in the axial direction with the axial loading per 

unit length as follow:  

𝐹𝑥𝑥(𝑡) =  𝐹𝑠 + 𝐹𝑑𝑐𝑜𝑠𝑃𝑡                                                                              (1) 

where 𝐹𝑠 is a time invariant component, 𝐹𝑑𝑐𝑜𝑠𝑃𝑡 is the harmonically pulsating component, and 𝑃 denotes the 

frequency of excitation in radians per unit time. 
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Since 𝑢0 ≪ 𝑤0  and 𝑣0 ≪ 𝑤0  we can consider that 𝜌𝑡
𝜕2𝑢0

𝜕𝑡2
⁄ → 0  and 𝜌𝑡

𝜕2𝑣0
𝜕𝑡2
⁄ → 0  . Therefore the 

equations of motion based on Donnell’s theory under the axial pulsating load are given by 
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and (𝑁𝑥𝑥 , 𝑁𝜃𝜃, 𝑁𝑥𝜃) are the total in-plane force resultants and (𝑀𝑥𝑥 , 𝑀𝜃𝜃, 𝑀𝑥𝜃) are the total  moment resultants . 

The nonzero von Karman strains associated with nonlinear large deflections and curvatures are given by 
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The force and moment resultants are defined in terms of 𝐴𝑖𝑗 extensional stiffnesses 𝐴𝑖𝑗, the bending stiffnesses 𝐷𝑖𝑗, 

the bending-extensional coupling stiffnesses 𝐵𝑖𝑗, membrane strains and the flexural (bending) strains as well. Then 

we define the membrane forces in terms of Airy’s stress function 𝜑 as 
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Hence, the strains and moment resultants are obtained in terms of the Airy’s stress function ϕ and 𝑤0. By combining 

the mid-plane strains, the compatibility equation can be expressed as 
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Then replacing the strains in terms of the Airy’s stress function ϕ  and 𝑤0 the non-linear equation of compatibility is 

derived. Considering the simply supported boundary condition the transverse displacement function 𝑤0(𝑥, 𝑦, 𝑡) is 

chosen as 

                                        𝑤0 = ∑ ∑ 𝑞𝑚𝑛(𝑡) sin
𝑚𝜋

𝐿
𝑥 cos𝑛𝜃∞

𝑛=1
∞
𝑚=1                                                      (9) 

where m and n represent the number of longitudinal and transverse half waves in corresponding standing wave pattern, 

respectively. The first two equations of motion (2) and (3) are satisfied automatically only by replacing (7a-7c). 

Solving Airy’s stress function ϕ  in terms of 𝑞𝑚𝑛(𝑡)  considering the axial loads applied at the edge, and then 

substituting in the forces and moments resultants, bring all them in the third equation of motion (4) and after 

multiplying the governing equation by sin
𝑚𝜋

𝐿
𝑥 cos𝑛𝜃 and integrating over the plate area, a system of 𝑚 × 𝑛 second-

order ordinary differential equations is obtained: 



𝑀𝑚𝑛�̈�𝑚𝑛(𝑡) + 𝐾𝑚𝑛𝑞𝑚𝑛(𝑡) − (𝐹𝑠 + 𝐹𝑑 cos 𝑝𝑡)𝑄𝑚𝑛𝑞𝑚𝑛(𝑡) + 𝜂𝑚𝑛𝑞𝑚𝑛
3 (𝑡) =  0                         (10) 

where 𝑀𝑚𝑛 , 𝐾𝑚𝑛  ,  𝑄𝑚𝑛 and 𝜂𝑚𝑛  are matrices in terms of extensional, bending, bending-extensional coupling 

stiffnesses, shell’s geometry properties and wave numbers for the studied laminate composite cylindrical shell. 

Introducing following notation: 
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Equation (12) can be written in the form of the nonlinear Mathieu equation as follow: 

                       �̈�𝑚𝑛(𝑡) + Ω𝑚𝑛
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where  
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Using Bolotin’s [3] method for parametric vibration, the solution of period 2𝑇 considering the first approximation is 

given by the following equation: 

                                                   𝑞(𝑡) = 𝑎 sin
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2
                                                           (17) 

By substitution of (17) into (14) a system of two homogeneous linear equations with respect to 𝑎 and 𝑏 can be 

obtained. This system has solutions that differ from zero only in the case where the determinant composed of the 

coefficients is equal to zero: 

                |
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where 𝐴 is the amplitude of steady-state vibrations and is given by: 

                                                       𝐴 = √𝑎2 + 𝑏2                                                                              (19) 

and  

                                                       𝑛𝑚𝑛= 
𝑃

2Ω𝑚𝑛
                                                                                    (20) 

Expanding the determinant and solving the resulting equation with respect to the amplitude, 𝐴, two solutions are 

obtained for  𝐴  which are called stable-solution and unstable-solution corresponding to +𝜇𝑚𝑛  and −𝜇𝑚𝑛 

respectively.  

Also the dynamically unstable regions are determined by either linear part of Mathieu-Hill equation (14) or setting 

𝐴 = 0 in (18) and solving for excitation frequency 𝑃 in the more simplified form of an eigenvalue problem as follow: 

                                     |
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where 

                                                        𝐾𝑚𝑛
∗ = 𝐾𝑚𝑛 − 𝐹𝑠𝑄𝑚𝑛                                                                       (22) 
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                                                        𝑄𝑚𝑛
∗ = 𝐹𝑑𝑄𝑚𝑛                                                                                  (23) 

 

3 RESULTS AND DISCUSSIONS 

The material properties used in the present analysis are chosen in accordance with Ng et al. [5] as 𝐸1 𝐸2 = 40⁄  

, 𝐺12 𝐸2⁄ = 0.5 and 𝜐12 = 0.25.  

Figure 2 displays the boundaries of the first (from left to the right of the frequency axis) dynamically-unstable region 

(Fig. 2a) and both the stable- and unstable-solution amplitude of steady-state vibrations (Fig. 2b) of a two-layered 

antisymmetric (90°, 0°) cross-ply laminated cylindrical shell having thickness ratio of 𝐿 𝑅⁄ = 2  and 𝑅 ℎ⁄ = 200 

subjected to tensile loading of 𝐹𝑠 = 0.1𝑁𝑐𝑟.where 𝑁𝑐𝑟 is the critical buckling load which is approximated as [8] 

𝑁𝑐𝑟 = 
𝐸2ℎ

2

𝑅√[3(1−𝜈12𝜈21)]
                                                   (24) 

 

 

Figure 2. First mode a) unstable region and b) stable- and unstable-solution amplitude of steady-state vibrations of two- layered 

(90𝜊/0𝜊) cross-ply laminated cylindrical shell having aspect ratios of 𝐿 𝑅⁄ = 2 and 𝑅 ℎ⁄ = 200 subjected to tensile loading of 

𝐹𝑠 = 0.1𝑁𝑐𝑟 . 

This approximates the static buckling load for laminated cylindrical shell and hence for the dynamic instability 

analysis both the static part of the load 𝐹𝑠 and the periodic part 𝐹𝑑 in Eq. (1) should be a percentage of this buckling 

load. As it can be observed from this figure each unstable region is separated by two lines with a common point of 

origin. Actually these two lines are not completely straight and they curved slightly outward. To compare the results 

in the following tables we specified each unstable regions by the non-dimensional frequency parameter 𝑝 as 𝑝 =

2𝜋𝑅𝑃√
𝜌𝑡

𝐴11
 of the point of origins and the half angle of the unstable regions as 𝜃. In the analysis of dynamic stability 

of shells, there exists simultaneously the stable and unstable solutions. It is a characteristic of the nonlinear response 

that the resonance curves are bent toward the axis of increasing frequencies [3]. The difference between these two 



solutions refers to the required magnitudes of frequency and amplitude to stimulate a parametric resonance. If this 

difference between them is small, then there might be the possibility of occurring parametric resonance. If the 

difference is large, it means high values of vibration frequency and amplitude are needed to stimulate a possible 

parametric resonance. The dynamic stability of such a plate or shell system is said to be good [1]. The zero stable- 

and unstable-solution amplitudes of this figure exactly coincide with the left and right curves of corresponding 

unstable regions, respectively shown in Figure 2a and the range of frequencies between these two solutions at 𝐴 = 0 

predicate the dynamically-unstable regions at this certain value of dynamic load factor  𝐹𝑑 𝐹𝑠⁄ . So this figure shows 

graphically that unstable regions could be obtained by setting 𝐴 = 0 in equation (18) and it could be considered as a 

validation of this nonlinear part of dynamic instability analysis. 

      The effects of variation of the magnitude of the tensile and compressive axial harmonically pulsating load on the 

dynamically-unstable regions and both the stable-and unstable-solution amplitudes of the steady-state vibrations, the 

results are presented in the Tables 1 and 2, respectively.  

 
Load   1st Mode 

(𝑚, 𝑛) = (1,6) 
2nd Mode 

(𝑚, 𝑛) = (1,5) 
𝐹𝑠 = 0.1𝑁𝑐𝑟 Point of origin 𝑝 (× 10−1) Present 6.3547085 6.3959595 

  Ref. [6] 5.6544179 5.9596621 

 𝜃 (× 10−3) Present 2.1550190 2.1411435 

  Ref. [6] 2.4095530 2.2971360 

𝐹𝑠 = 0.2𝑁𝑐𝑟 Point of origin 𝑝 (× 10−1) Present 6.3977001 6.4386756 

  Ref. [6] 5.7026828 6.0054732 

 𝜃 (× 10−3) Present 4.2775352 4.2504033 

  Ref. [6] 4.7959232 4.5549685 

𝐹𝑠 = 0.3𝑁𝑐𝑟 Point of origin 𝑝 (× 10−1) Present 6.4404047 6.4811102 

  Ref. [6] 5.7505425 6.0509375 

 𝜃 (× 10−3) Present 6.3686202 6.3288172 

  Ref. [6] 7.1268993 6.7749563 

𝐹𝑠 = −0.1𝑁𝑐𝑟 Point of origin 𝑝 (× 10−1) Present 6.2678408 6.3096597 

  Ref. [6] 5.5566307 5.8669669 

 𝜃 (× 10−3) Present 2.1886489 2.1741179 

  Ref. [6] 2.4634550 2.3333558 

𝐹𝑠 = −0.2𝑁𝑐𝑟 Point of origin 𝑝 (× 10−1) Present 6.2239523 6.2660642 

  Ref. [6] 5.5070860 5.8200656 

 𝜃 (× 10−3) Present 4.4121140 4.3823579 

  Ref. [6] 4.9655192 4.6995054 

𝐹𝑠 = −0.3𝑁𝑐𝑟 Point of origin 𝑝 (× 10−1) Present 6.1797521 6.2221631 

  Ref. [6] 5.4570915 5.7727834 

 𝜃 (× 10−3) Present 6.6716455 6.6259279 

  Ref. [6] 7.5075589 7.0994407 

Table 1. The first two unstable regions of a two-layered (90°/0°) antisymmetric cross-ply laminated cylindrical 

shells having aspect ratios of 𝐿 𝑅⁄ = 2 and 𝑅 ℎ⁄ = 200 subjected to various tensile and compressive loading. 

 

Comparing the results indicates that increasing the magnitude of tensile axial periodic loads results in increasing the 

corresponding excitation frequencies that causes instability, which means shifting dynamically-unstable regions to 

the right along the frequency axis (Table 1), and consequently decreasing the amplitude of steady-state vibrations 

(Table 2). The inverse trend can be seen in the case of compressive loading; increasing the magnitude of compressive 

longitudinal periodic loads results in decreasing the corresponding excitation frequencies that causes instability, 
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which means shifting dynamically-unstable regions to the left along the frequency axis (Table 1), and consequently 

increasing amplitude of steady-state vibrations (Table 2). These outcomes can be expected because increasing the 

tensile axial load makes the shell to be stiffer, and contrarily increasing the compressive axial load results in 

decreasing the shell’s stiffness. The results also illustrate that width of instability regions are increased once the 

absolute value of magnitude of in-plane loads are increased for both tensile and compressive loading conditions. All 

these outcomes are in an excellent conformance with those reported by Ng et al. [6] and also in terms of the accuracy 

of the results there are good agreements between these two studies. 

 
 

Load Non-Dimensional Amplitude 

(A R⁄ ) 
1st Mode 

(𝑚, 𝑛) = (1,5) 
2nd Mode 

(𝑚, 𝑛) = (1,4) 

𝐹𝑠 = 0.1𝑁𝑐𝑟 , 𝐹𝑑 = 0.3𝐹𝑠 Stable-Solutions (× 10−2) 10.03062259 9.193301364 

 Unstable-Solutions (× 10−2) 10.0124106 9.173427196 

𝐹𝑠 = 0.3𝑁𝑐𝑟 , 𝐹𝑑 = 0.3𝐹𝑠 Stable-Solutions (× 10−2) 9.926979564 9.080105931 

 Unstable-Solutions (× 10−2) 9.871669205 9.019603836 

𝐹𝑠 = 0.5𝑁𝑐𝑟 , 𝐹𝑑 = 0.3𝐹𝑠 Stable-Solutions (× 10−2) 9.822242973 8.965481442 

 Unstable-Solutions (× 10−2) 9.72889201 8.863111204 

𝐹𝑠 = −0.1𝑁𝑐𝑟 , 𝐹𝑑 = 0.3𝐹𝑠 Stable-Solutions (× 10−2) 10.15120088 9.324713383 

 Unstable-Solutions (× 10−2) 10.1332056 9.305119893 

𝐹𝑠 = −0.3𝑁𝑐𝑟 , 𝐹𝑑 = 0.3𝐹𝑠 Stable-Solutions (× 10−2) 10.28811899 9.473583948 

 Unstable-Solutions (× 10−2) 10.23476048 9.415610573 

𝐹𝑠 = −0.5𝑁𝑐𝑟 , 𝐹𝑑 = 0.3𝐹𝑠 Stable-Solutions (× 10−2) 10.42323872 9.620151037 

 Unstable-Solutions (× 10−2) 10.33531752 9.524819615 

Table 2. The stable- and unstable-solution amplitudes corresponding to first two modes of steady-state vibrations 

for a ten-layered (90°, 0°)5 antisymmetric cross-ply laminated cylindrical shell having aspect ratios of 𝐿 𝑅⁄ = 2 and 

𝑅 ℎ⁄ = 200 to various tensile and compressive loading under the excitation with non-dimensional frequency 

parameter 𝑝 = 1. 

 

The effects of variation of the length-to-radius ratio 𝐿 𝑅⁄  on the stable-solution amplitude of steady-state vibrations 

are shown in Figure 3 for the eight-layered (90°, 0°)4  cross-ply laminated cylindrical shell having thickness 

ratio 𝑅 ℎ⁄ = 100 subjected to the axial tensile loading of 𝐹𝑠 = 0.5𝑁𝑐𝑟 and 𝐹𝑑 = 0.3𝐹𝑠 . As expected at the specific 

excitation frequency the shell having higher aspect ratio 𝐿 𝑅⁄  has a larger amplitude or in other words the 

corresponding excitation frequency that causes instability shifts to the left of frequency axis corresponding to lower 

frequencies, once the aspect ratio 𝐿 𝑅⁄  is increased. This is due to the fact that increasing the length of the shell makes 

the shell to be less stiff. 

It is also observed from the Figure 3 that by increasing the length, the circumferential wave numbers corresponding 

to the first two modes approach successively to lower values. The first two modes at 𝐿 𝑅⁄ = 1 are modes (1, 5) and 

(1, 4) , for 𝐿 𝑅⁄ = 5  they are modes (1, 4)  and (1, 3)  , and for 𝐿 𝑅⁄ = 10  they are modes (1, 3)  and (1, 2) 
respectively.  

     To examine the effect of the thickness ratio 𝑅 ℎ⁄  on the stable-solution amplitude of steady-state vibrations for the 

eight-layered (90°, 0°)4  cross-ply laminated cylindrical shell with length ratio  𝐿 𝑅⁄ = 2  subjected to axial 

compressive loading of 𝐹𝑠 = −0.3𝑁𝑐𝑟 and 𝐹𝑑 = 0.3𝐹𝑠 the results are presented in Figure 4. Here the first two modes 

are modes (1, 5)  and (1, 4)  respectively. It shows that by increasing the thickness ratio 𝑅 ℎ⁄ , at any specific 

frequency, the amplitude of steady-state vibrations is increased or in other words the corresponding frequency of 

excitation that causes instability shifts to the left of frequency axis having lower frequencies. This is again due to the 

fact that decreasing the thickness of the shell makes the shell to be less stiff. 



 
Figure 3. Variation of the first two stable-solution amplitudes of steady-state vibrations with shell length of an eight-layered 

(90°, 0°)4 antisymmetric cross-ply laminated cylindrical shell having thickness ratio 𝑅 ℎ⁄ = 100 subjected to tensile loading of 

𝐹𝑠 = 0.5𝑁𝑐𝑟  and 𝐹𝑑 = 0.3𝐹𝑠 
 

 
Figure 4. Variation of the first two stable-solution amplitudes of steady-state vibrations with shell thickness of an eight-layered 

(90°, 0°)4 antisymmetric cross-ply laminated cylindrical shell having length ratio 𝐿 𝑅⁄ = 2 subjected to compressive loading of 

𝐹𝑠 = −0.3𝑁𝑐𝑟 and 𝐹𝑑 = 0.3𝐹𝑠 
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4 CONCLUSION 

The non-linear dynamic stability of antisymmetric cross-ply laminated composite cylindrical shells under 

combined static and periodic axial loading has been studied. The results indicted that increasing the magnitude of 

tensile longitudinal periodic loads results in shifting dynamically-unstable regions to the right along the frequency 

axis, and consequently decreasing the amplitude of steady-state vibrations. However, increasing the magnitude of 

compressive longitudinal periodic loads causes shifting dynamically-unstable regions to the left along the frequency 

axis, and consequently increasing amplitude of steady-state vibrations. Albeit increasing either the magnitude of the 

tensile or compressive axial periodic loads results in increasing the widths of instability regions. 

It is also concluded that increasing either length-to-radius 𝐿 𝑅⁄  or radius-to-thickness 𝑅 ℎ⁄  of the cylindrical shells 

makes the shell be less stiff consequently at any specific frequency, the amplitude of steady-state vibrations increased 

or in other words the corresponding frequency of excitation that causes instability shifts to the left of frequency axis 

having lower frequencies. 

A comparative study of the present work with those available in literature shows a very good agreement. However, 

as the results of the present study reveal, the linear analysis carried out in available literature can only provide the 

information about the instability region and unable to predict the vibration amplitudes in these regions. The non-linear 

analysis developed in the present work can determine such vibration amplitudes. 
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