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ABSTRACT 

The eXtended Finite Element Method (XFEM) is one of the most versatile methods for solving crack propagation 

problems [1]. XFEM works by enriching the critical region(s) with special shape functions to account for crack 

propagation [2]. A noteworthy contribution for XFEM applications was done by its coupling with Level Sets 

Method (LSM) making it possible to predict the crack location and propagation direction [3, 4]. This method is 

currently implemented in finite element commercial code ABAQUS. Meanwhile, XFEM predictions for crack 

onset and propagation rely on the stress field of finite elements simulations. It is well known that stress fields tend 

to converge at a slower rate than that of displacements, making it difficult to accurately capture the crack behavior. 

Furthermore, identifying the critical region(s) rely mainly on skills of an expert user. In the presented work, a new 

approach is developed to automate identification process of potential crack onset region(s), eliminating the need 

for an expert user and minimizing the problem complexity. Hence, it allows non-expert users to precisely model 

crack problems in ABAQUS. Also it results in enriching critical region(s) only instead of enriching the entire 

model enhancing cost effectiveness. Moreover, the new approach is capable of selecting the optimized mesh size 

for simulations. Both features have a significant effect on computational efficiency and accuracy of predicted 

results. For this purpose a python script is developed into ABAQUS scripting interface implementing an iterative 

algorithm based on material-specific failure criterion. The developed technique is to capture the behavior of cracks 

in brittle materials such as matrix resins of composite materials. Hence, a brittle material failure criterion was 

used for crack onset. For the purpose of initial validation of the developed algorithm, a set of six concrete 

specimens are tested under four point bending loading. The predicted critical loads corresponding to crack onset 

showed an excellent agreement with measurements. 

1 INTRODUCTION 

Geometric discontinuities such as a sharp change in geometry, opening, hole, notch or a crack are known to be 

the main source of failure [5]. Discontinuities generate significant stress concentrations reducing the overall 

strength of the material [5]. For a crack problem, the stress field at the tip is singular and the conventional FEM 

can hardly capture the crack behavior. For instance, modeling crack onset and propagation problems in solid 

mechanics is quite problematic. Which is considered to be a non-smooth solution that can be dealt with based on 

one of two fundamental approaches [6]. The first is based on the classical FEM which requires mesh alignment 

with the crack at each step. As well as, refining the mesh near crack tip in order to capture the stresses accurately. 

This is not only computationally inefficient but also may affect accuracy of the results. In addition, this might be 

a thought-provoking process requiring an expert user to accurately model the problem. The second approach is 

based on enriching the approximation polynomials with special shape functions that can capture the behavior of 

discontinuities or singularities called ‘enriched methods’ [6]. The main advantage of the second approach is that 
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the solution is independent of the mesh. This approach is a quite useful improvement compared to the first one. 

XFEM belongs to the second category which was first introduced by Ted Belytschko et al. [7, 2]  in 1999 based 

on the Partition of Unity Finite Element Method (PUFEM) by Babuska et al. [8, 9]. References [10, 6] provide a 

comprehensive review of XFEM method. The proposed technique in the current study is using the capabilities of 

XFEM method for crack propagation while optimizing its efficiency regarding crack onset. It is noteworthy to 

mention that usually crack problems rely on notched beams for testing. This is essentially done to initiate or trigger 

the crack. Few studies were conducted to test un-notched beams. An earlier study by Hamad et al. [11], presented 

a numerical model where the cracked zone was modelled using the fictitious crack approach while any other zone 

was considered linearly elastic [11]. Hamad et al. [11] tested un-notched beams in their study. Their approach was 

based on the analytical model for fictitious crack propagation in concrete beams by Ulfkjær et al. [12]. Hamad et 

al. assumed pre-existing crack in their model. The prediction results showed a relatively good agreement 

compared to testing with an upper bound of more than 10%. 

2 PROBLEM FORMULATION 

As mentioned earlier, XFEM predictions for crack onset rely on the stress field of Finite Element (FE) simulations. 

Stress fields are known to converge at a slower rate than those of displacements. This arises the need of optimizing 

the mesh quality to assure predictions accuracy. Moreover, XFEM requires an expert user to identify critical 

zone(s) otherwise the entire domain will be enriched with special shape functions which in turn will increase the 

computational cost drastically. The aim of the current work is to provide a robust technique that can allow a non-

expert user to accurately model a problem for optimizing crack onset and propagation in a structure without 

assuming crack location a priori. The new technique is developed using python scripting capabilities in the 

commercial Finite Element Analysis (FEA) software ABAQUS. The proposed technique can be used to account 

for different materials. In the sense of making the modeling process easier and computationally more efficient 

while eliminating the need of an expert user. 

3 XFEM FUNDAMENTALS 

In order to illustrate the XFEM fundamentals, consider the FE model of a cracked body shown in Figure 1. In this 

mesh there exists regular nodes, heaviside nodes and crack-tip nodes. Regular nodes are elemental nodes in which 

their elements are not cut by the crack (set I). Regular nodes follow the conventional FE shape functions 

formulation. On the other hand, heaviside nodes are elemental nodes wherein the crack is passing through (set J). 

Heaviside nodes are enriched with special shape functions to account for the crack discontinuities. Finally, the 

crack-tip nodes are those nodes surrounding the crack-tip (set K). The crack-tip nodes are enriched with special 

shape functions that can capture the crack propagation behavior based on the Stress Intensity Factor (SIF) at the 

crack-tip.  

 

 

Figure 1. Finite element model of a cracked body 
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The special shape function for the XFEM method takes the form of Equation 1. 

𝑢ℎ(𝑥) = ∑ 𝑢𝑖𝑖∈𝐼 𝑁𝑖 +  ∑ 𝑏𝑗𝑗∈𝐽 𝑁𝑗𝐻(𝑥) +  ∑ 𝑁𝑘[∑ 𝑐𝑘
𝑙 𝐹𝑙(𝑥)4

𝑙=1 ]𝑘∈𝐾   (1) 

Where 𝑥 is the global displacement, 𝑁𝑖 is the shape function of node 𝑖, 𝑢𝑖 is the degree of freedom associated to 

node 𝑖, 𝐻(𝑥) is the heaviside function or jump function, 𝑁𝑗  is the shape function interconnected to the jump 

function or discontinuity at node 𝑗, while 𝑏𝑗  is the degree of freedom linked to the jump function (heaviside 

enrichment function), 𝐹𝑙(𝑥) is the crack-tip enrichment function, 𝑁𝑘 is the shape function associated to the crack-

tip function at node 𝑘 and 𝑐𝑘
𝑙  are the additional degrees of freedom related to the elastic asymptotic crack-tip 

enrichment functions (presented by donut markers on Figure 1). Regarding the sets that describe the domain of 

each region, 𝐼 is the set of all nodes in the entire mesh of the problem, 𝐽 is the set of the heaviside enrichment 

nodes (those nodes whose shape functions are censored by the crack enrichments) and 𝑘 is the one representing 

the set of crack-tip enriched nodes (those nodes whose shape functions are amended by the crack-tip enrichments). 

Throughout the domain of the problem, the regions which are neither enriched by a Heaviside function nor a 

crack-tip asymptotic function are solved using the regular conventional shape functions of a classical FEM 

problem. Hence, Equation 1 can be simplified to include only the first term on the Right Hand Side (RHS) leading 

to the conventional formulation of FEM as. 

𝑢ℎ(𝑥) = ∑ 𝑢𝑖𝑖∈𝐼 𝑁𝑖  (2) 

For the region which is cut by the crack (crack domain), the displacement approximation function of XFEM can 

be reduced to only include the first and the second terms of Equation 1. Which can be presented as follows. 

𝑢ℎ(𝑥) = ∑ 𝑢𝑖𝑖∈𝐼 𝑁𝑖 +  ∑ 𝑏𝑗𝑗∈𝐽 𝑁𝑗𝐻(𝑥)  (3) 

Finally, in order to account for the singularities at the crack-tip, Equation 1 can be reduced to only include the 

first and the third terms on the RHS. Which can be presented by. 

𝑢ℎ(𝑥) = ∑ 𝑢𝑖𝑖∈𝐼 𝑁𝑖 +  ∑ 𝑁𝑘[∑ 𝑐𝑘
𝑙 𝐹𝑙(𝑥)4

𝑙=1 ]𝑘∈𝐾   (4) 

For further details on the derivation of the method the reader is invited to consult with references [2, 3, 4, 7, 13]. 

4 METHODOLOGY 

The material behavior is dominant for selecting the failure criterion. In the current work composite materials are 

the ones of interest. Most composite materials exhibit a brittle failure due to their low strain to failure capacity. 

Brittle failure is said to be catastrophic, once a crack is initiated it will propagate rapidly till fracture. Therefore 

accurate crack onset prediction for such material behavior is necessary. For that purpose, a maximum strain failure 

criterion is adopted for crack initiation. As for crack propagation, the evolution of the crack after being initiated 

is based on the material fracture energy. As mentioned earlier, the XFEM method is promising considering 

complex problems dealing with discontinuities and singularities. Some drawbacks of the method in its current 

phase are to be exemplified. First challenge is the dependency of predictions accuracy on mesh quality. Second 

challenge is related to the computational cost resulting from enriching the entire domain of the problem. The main 

aim of current work is automating the modeling process while maintaining desired accuracy for predicted failure 

results. For that purpose, an automation technique is proposed using Python scripting to perform three main tasks. 

First, the process of determining the optimum mesh size. An algorithm is implemented in the Python script for 

determining the optimum mesh size, which is strongly dependent on the model geometry. Second, the model is to 

be checked for failure or crack onset. The checking process is done by an iterative algorithm based on the selected 



failure criterion. Third, once critical region(s) are identified, the possible critical zone(s) for crack onset and 

propagation are enriched with special shape functions using the XFEM method for failure predictions. 

5 FINITE ELEMENT ANALYSIS MODEL 

A four point bending beam for concrete based on the ASTM C78 designation [14] is chosen to test and validate 

the proposed technique. Parameters for geometric dimensions, loading conditions, as well as the boundary 

conditions were set in the script based on the description of the aforementioned standard test. Figure 2 illustrates 

loading and boundary conditions of the four point bending beam problem. The total length of the beam is 400 mm 

centrally position on two supports spanned 300 mm apart. The beam is of square cross-section with a width of 

100 mm and the load is applied using two concentrated forces on the mid segment of the supported span allowing 

the beam to experience uniform bending.  

 

Figure 2. 2D Beam showing loads and boundary conditions 

The material model for concrete is chosen to be linearly elastic in compression and tension until failure. For failure 

initiation, a traction separation law based on maximum principal stress is adopted taking into consideration the 

ease of determining the maximum tensile strength for concrete by testing. For the damage evolution, it was 

selected based on the fracture energy of concrete rather than the critical crack opening displacement. This is due 

to the difficulty of capturing a crack behavior after being initiated for a brittle material. Moreover, the research 

data available in literature on fracture energy of concrete are is quite more convenient. A general static step is 

chosen for the analysis. A 4-noded bilinear plane strain quadrilateral element (CPE4R) with reduced integration 

is selected for meshing. The model is meshed using structured meshing control in ABAQUS. 

6 PROPOSED TECHNIQUE 

The proposed technique has three main tasks to be performed. These tasks are going to be illustrated in this section. 

First, determining the optimum mesh size for the four point bending beam problem. A correlation between the 

optimum mesh size and the smallest dimension in the geometry is extracted. Which in turn lead to a factor relating 

the mesh size to the given geometry. This factor is used in the script to select mesh element size automatically. 

The convergence history of the normalized principal stress predictions is shown in Figure 3.  
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Figure 3. Normalized principal stress convergence  

Second, the model is to be checked for failure or crack onset. The iterative algorithm dedicated for that purpose 

is shown in Figure 4. On each iteration the failure criterion is checked. In case the failure condition is not met, the 

load is incremented until the failure condition is encountered. During each iteration the script extracts data 

regarding the most probable region(s) identified for crack onset to occur. Extracted data are appended to a report 

with their associated strains and stresses. 

 

Figure 4. Flowchart of the proposed technique 



Once the failure criterion is encountered, the script highlights the identified critical region(s) for crack onset as 

shown in Figure 5. This identified region is the one where the crack is most likely to initiate.   

 

Figure 5. Critical region(s) for crack initiation highlighted on the FEA model 

Third, the script automatically enriches possible critical zone(s) for propagation. The enriched zone(s) are shown 

in Figure 6. The enriched zone(s) for crack propagation are based on identified critical region(s) for crack onset. 

Once the model enrichment is accomplished, the model becomes ready for predicting crack onset and propagation. 

 

Figure 6. The FEA beam model showing the enriched zone(s) 

Finally, the script submits a new job to the ABAQUS solver. This job is based on the XFEM enrichments. The 

use of enrichments capabilities enables simulating failure predictions regarding the crack onset and its 

propagation. Bearing in mind that critical region(s) have already been identified using the proposed technique. In 

other words, cracks are expected to initiate with in the identified region(s) only. 

7 NUMERICAL PREDICTIONS, TESTING AND VALIDATION 

The proposed technique identified the critical region(s) most likely to fail. In other words, the region(s) where the 

crack will initiate. For the four point bending problem, the critical region recognized by the proposed technique 

was shown on Figure 5. As can be seen from Figure 5, the script was able to highlight the area which experience 

the maximum bending moment in the tension side. Tensile strains in this region are more likely to grow, making 

this area the most critical one. Crack propagation zone(s) were automatically enriched by the script following the 

identification of the most critical region for crack onset. The enriched zone was shown in Figure 6. The proposed 
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technique enriched only 25 % of the whole domain of the problem. This will have a significant effect on the 

computational cost for solving the same problem. 

Six concrete specimens were tested at Memorial University of Newfoundland laboratories. The material 

mechanical properties for the specimens were measured from testing. First, the compressive strength was 

measured according to ASTM C39 standard testing [15]. Second, the flexural strength was measured according 

to ASTM C78 [14]. Third, splitting tensile strength was measured according to ASTM C496 [16]. Finally, the 

modulus of elasticity was measured according to ASTM C469 [17]. The measured data associated to the standard 

testing are recorded in Table 1.  The Poisson’s ratio was assumed to be 0.2.   

 

Material 

Compressive  

Strength 

 

(MPa) 

Flexural 

Strength 

 

(MPa) 

Splitting 

Tensile 

Strength 

(MPa) 

Modulus of 

Elasticity 

 

(MPa) 

Mix #1 60.08 8.40 3.43 32010 

Mix #2 51.16 8.31 3.07 30910 

Mix #3 45.90 5.40 3.20 29300 

Mix #4 81.09 10.56 5.41 34060 

Mix #5 74.07 9.66 3.91 35500 

Mix #6 41.49 6.57 3.32 27470 

Table 1. Mechanical properties from testing the six concrete specimens (MPa = 106 *N/m2) 

The fracture energy of concrete 𝑮𝒇 was calculated using Equation 5 as introduced in [18]. 

𝐺𝑓 = 𝐺𝑓𝜊
(

𝑓𝑐+8

10
)

0.7

  (5) 

Where 𝐺𝑓 represents the calculated fracture energy of plain concrete, 𝐺𝑓𝜊
 of 26 𝑁/𝑚 is used in the current study 

to correlate with the aggregate size used in preparing the specimens. The fracture energy is dependent on two 

main parameters. The size of aggregate used and the compressive strength 𝑓𝑐 of the mixture used. The fracture 

energy for each specimen was calculated and recorded in Table 2. The failure load measured from testing FTesting 

was recorded in Table 2 for each specimen. The load cell accuracy of the used testing machine is ±0.062 %. 

 

Material 
 𝑮𝒇 

(N/M) 

FTesting  

(N) 

FPredicted  

(N) 

Error  

(%) 

Mix #1 99.56 28000 28542 -1.94 

Mix #2 90.24 27700 28238 -1.94 

Mix #3 84.54 18000 18343 -1.91 

Mix #4 120.19 35200 35883 -1.94 

Mix #5 113.48 32200 32832 -1.96 

Mix #6 79.64 21900 22326 -1.95 

Table 2. Calculated fracture energy 𝐺𝑓, Testing failure load, Predicted failure load and Error 



 

Finally, the predicted failure load FPredicted from the XFEM simulation results using the proposed technique is 

tabulated for each corresponding mixture. Predictions represented an upper bound when compared to testing 

results with an average approximate error of 2%. Figure 7 is depicted for showing the actual cracks from testing 

presented by solid lines compared to the predicted ones presented by dashed lines. 

 

Figure 7. Cracked Specimens after testing compared to the proposed technique predictions  

8 CONCLUSIONS AND FUTURE WORK 

The proposed technique was able to identify the critical region(s) for the four point beam bending problem. 

Computational effort was reduced by more than 70%. The technique omitted the need of an expert user for 

modeling the current problem. In terms of failure load, an upper bound was observed comparing predictions to 

actual testing results with an average error of 2%. The predicted results of crack onset and propagation are in an 

excellent agreement with testing as shown in Figure 7. Based on the current study, the proposed technique is very 

promising. First, automating the process of failure prediction might be useful for similar studies. Second, in terms 

of computational efficiency the technique showed a strong reduction in computational efforts. Third, regarding 

the failure load based on the problem in hand, the predictions showed an outstanding agreement with the testing 

results. Finally, the crack onset location as well as its propagation predicted by the technique are in an excellent 

agreement with the testing results. Currently, Lamination resin materials are being tested. For future work, the 

current technique is to be extended for testing more complex material behavior. Reinforced composites are to be 

examined using the proposed technique. Three dimensional problems are to be considered in the future, as well 

as contact problems.  . Afterwards, laminated composites are to be studied using the proposed technique. 
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