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Abstract

Random and periodic representations of composite microstructures are inherently different both in terms
of the range of stresses that each phase carries as well as the total load over the entire volume of matrix and
fiber phases. In this study, an algorithm was developed to generate random representative volume elements
(RVE) with varying volume fractions and different values for the minimum distance between fibers. The
random microstructures were analyzed using finite element models (FEM) and the results compared to
those for periodic microstructured RVEs in terms of the range of stress, maximum stress, and homogenized
stiffness values. Results show that random microstructures exhibit a much larger range of stress values
than periodic microstructures, resulting in an uneven distribution of load and distinct areas of high and
low stress concentrations in the matrix. It is shown that the maximum stress in the matrix phase, often
responsible for failure initiation, is largely dependent on the random morphology and minimum distances
between fibers. Periodic and random patterns of fibers were generated in finite element software Abaqus,
then periodic boundary conditions, defined as equation boundary conditions, were considered to ensure
the periodicity of deformations and stresses. The finite element models were solved and distribution of
stress, specifically in matrix phase, for both random and periodic patterns of fibers were compared. This
comparison showed that stress concentrations in the matrix phase, due to random morphology, are much
higher than that of periodic microstructure.

1 Introduction

Micromechanical analysis can provide researchers with a range of information on the local and global prop-
erties of composite materials. Many studies in composite structural design and analysis are done at the
macrostructural level using homogenized material properties, but there are a number of macrostructral
behaviours that are governed by fiber/matrix interactions and properties at the microstructural (fiber)
level [1; 2]. A thorough understanding of composite fiber/matrix interactions and their underlying mech-
anisms is critical to understanding and predicting the macrostructural behaviour of these materials.

Figure 1 shows two examples of typical periodic and random microstructures. Micromechanical anal-
ysis is traditionally performed on a periodic (or repeating) microstructure, where there are two types of
periodic microstructures commonly referred to as hexagonal and square packed. The periodic microstruc-
ture assumption confines researchers to the study of global phenomena such as global effective properties,
often leading to difficulties with the accurate prediction of material properties and associated behaviour
under load. Because of the irregular nature of the fiber distribution within the composite cross section, a
phenomenon such as failure that is highly dependent on local morphology can not be accurately studied
using ordered cross sections based on the periodic microstructure assumption.

Real composite structural morphology is very different from the repeating microstructure model and
there is therefore an error associated with the use of repeating microstructures for analysis, particularly
in the context of non-linear problems [3]. Microstructural morphology of composites influences the mag-
nitudes and the distribution of stresses at the microstructural scale and ultimately dictates the overall
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(a) Periodic microstructure (b) Random microstructure
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Figure 1: Two types of microstructures with the same number of fibers (and Vf ) where (a) is a periodic or
uniform microstructure and (b) is a random or nonuniform microstructure. Square and hexagonal packing
(or unit cells) are shown in the periodic microstructure.

behavior of the composite material at the macrostuctural level. For this reason, irregular or random mi-
crostructures based on real composite morphologies have been adopted for the evaluation of linear and
non-linear properties of composites by several researchers [4; 5].

With the computational advances of recent decades, it is affordable to analyze irregular or random
microstructures and study local phenomena using finite element analysis. A significant challenge associated
with the analysis of random microstructures is the generation of a representative volume element (RVE)
that is a geometrical representation of the actual microstructure [6], meaning that the RVE must be
statistically equivalent to a real microstructure [7]. A good geometrical representation requires that the
size of the RVE be optimum; if the RVE is too small it cannot include the range of irregularities that
affects stress distribution and if it is too large, it is computationally expensive.

Transverse matrix microcracking is often the first mode of failure in composite structures [8] and governs
the fracture process [9]. The current study is focused on the transverse cross-section where the failure and
fracture initiation is dominated by matrix properties and where the distribution of fibers dictates the stress
concentrations and distributions in the matrix. Random microstructures are used to study the effects of
morphology and fiber distribution on stress concentrations and the maximum stresses in the matrix phase
of carbon-epoxy composites.

In this study, we show that the maximum stress in the matrix is largely dependent on the random
morphology of the microstructure. First, the stresses in the matrix phase for periodic and random mi-
crostructures are analyzed with a new approach using an area percentage histogram. The histogram is
a method to display the results for the entirety of the matrix phase for both types of microstructure.
Secondly, it is shown that it is necessary to investigate a large number of random samples to ensure the
inclusiveness of the analysis for maximum stress. This is because the maximum stress in the matrix phase
depends on the specific random morphology and consequently, the results of analyses for maximum stress
in random RVEs leads to a range of values rather than a singular value.

The results show the range and frequency of the maximum stress values vary with different types of
microstructures. It is shown that both the range of values as well as the maximum stress is strongly de-
pendent on the minimum distance between fibers. Also, the modulus properties in the transverse direction
change depending on the choice of microstructural representation due to the difference in the load-carrying
behavior of the matrix in the random and periodic microstructures.
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Micromechanical Representation

Several methods exist for the generation of random microstructures. These methods can be classified in two
main categories; image-processing based and numerical generation. For the first method, an image from
the cross section of the composite is acquired and the microstructure topology is generated numerically
using image processing techniques [10; 3]. This method requires several steps (image acquisition, image
processing, etc) and can be computationally expensive if a large number of different random arrangements
are to be studied.

The second category involves generating the random microstructures algorithmically. The primary
challenge associated with these methods is to come up with an approach where the resulting microstructure
is a statistically fair representation of the actual microstructure. Statistical functions such as the nearest
fiber distance distribution function of virtual and actual microstructure can be compared to find a fair
RVE or Statistically Equivalent RVE (SERVE) [7; 11]. An approach used by Gusev et al. [12] employs
a Monte Carlo technique to generate random microstructures from perturbations of a regularly packed
microstructure. A similar method based on the perturbation of regular microstructure is used in [13]
to generate meso-scale random RVEs. Vaughan et al.[14] used statistical data from image processing of
cross-sections to generate microstructures that are representative of actual samples. Melro et al. proposed
a three-step, computationally efficient algorithm for the generation of random microstructures [15]. All
the above methods have been reviewed against the criteria proposed by Swaminathan et al. [7] and can
generate a SERVE for a random microstructure.

The approach used in this study is similar to that introduced in [15], a method that has been shown to
be able to achieve high volume fractions and be statistically representative [16]. First, a series of random
center points is generated where the random center point generator checks to make sure there is no overlap
with other previously generated fibers. The method includes the option of defining a minimum distance
between fibers. High fiber volume fractions, particularly for large δ = l/r ratios (length of RVE to radius
of fiber), are not possible using the random generator alone because after a number of iterations there is
no valid location for the addition of a new center point. The next step in obtaining higher fiber fractions
is to move the center points in the RVE to make room for new fibers (this step is called stirring the fibers
in [15]). The current work includes a novel refinement whereby the algorithm creates empty spaces by
choosing the most isolated fibers to move. Choosing the most isolated fibers increases the probability of
creating an empty space, thus increasing the chance of adding a new fiber. For example, if fibers that are
already close together are moved towards each other, no empty space is created for adding a new fiber.
Isolated fibers are identified by averaging the distances to three or four nearest neighbors for each fiber, and
identifying isolated fibers as those with the largest average distance. The number of moving candidates can
be changed depending on iteration number and desired volume fraction. Figure 2 illustrates the schematic
of the isolated fiber selection method. The moving direction is towards neighboring fibers, and the move
distance is a random value chosen between the determined minimum distance and the distance between
two fibers. Figure 2A depicts the situation where adding a new fiber (shown with dashed lines) is not
possible before moving the isolated fibers. After moving the fiber toward neighboring fibers as shown in
Fig.2B, an empty space is created and the new fiber does not overlap with others.

2 Finite element implementation

The commercial Finite Element (FE) software Abaqus [17] was used to conduct this study. Random and
periodic microstructures where the bonding between fibers and matrix is considered perfect are analyzed
using FEM. It has been shown that interface properties have a significant effect on failure initiation and
failure path [18], and damage progression and their properties are normally defined using a cohesive zone
element. However, for the purpose of this study in which the material is considered to be in the elastic
region, this bond is considered perfect in order to reduce the number of elements and computational time
required to perform the analysis on several hundred samples.
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A B

Figure 2: Schematic of moving isolated fibers. (A) shows the microstructure before moving in which adding
a new fiber (dashed circle) is not possible, (B) after moving the fibers that opens a space for adding a new
fiber

Table 1: Typical stiffness properties for epoxy matrix and carbon fibers in transverse direction.

Property Value

Ef (MPa) 28000
νf 0.23
Em (MPa) 2755
νm 0.34

Two types of boundary conditions (periodic and tension boundary conditions) are applied to the RVE.
A large number of random microstructures were generated and values for the maximum stress in the matrix
phase was extracted from each FE solution. The material properties used in this study are given in Table 1.
The elements that are used are triangular 3-node linear plane stress elements (CPS3). The mesh size is
defined using a sensitivity analysis for different sizes of elements, and a mesh size of one fourth of the fiber
radius (r/4) was chosen for the study.

2.1 Boundary Conditions

The boundary conditions for microstructural analysis can be applied in two ways. One approach is to embed
the RVE in a homogeneous block of material where the global material properties are the same as the RVE
material properties and then apply the regular displacement boundary conditions to the homogeneous
block [19]. The advantage of this approach is that the RVE itself does not have to be periodic but it
requires a larger number of elements and is computationally expensive. The second, more commonly
employed and more efficient approach is to create a periodic or repeating RVE microstructure as discussed
above where, in addition to the displacement boundary conditions, the periodic boundary conditions are
also satisfied. Periodic boundary conditions combined with repeating RVE microstructures provide an
efficient tool for homogenization and microstructural analysis. In this study, the second approach (PBCs)
was used for imposing boundary conditions.

Periodic boundary conditions (PBC) are imposed on the edges of the RVE. The following formulae
describes the applied PBC:

u(0, y) − u(l1, y) = εxl1

v(x, 0) − v(x, l2) = εyl2
(1)
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stress concentrations

Figure 3: Stress concentrations as a result of the random morphology of a microstructure.

where u and v denote displacements, εx and εy are strains, and l1 and l2 are the lengths of RVE in
the x and y directions, respectively. Generally, for homogenization purposes, εx is set equal to 1 and εy to
0. The effective global properties are then found by integrating the stresses over the area (or volume). A
detailed description of PBCs for composites can be found in [20]. PBCs are imposed in Abaqus using the
equation boundary condition option. For PBCs, each node at the edge of the RVE is connected with an
equation (Eq. 1) to the counterpart node on the opposite edge.

While periodic boundary conditions are required to ensure the periodicity of the RVE, displacement
boundary conditions are applied in order to generate stresses. For the purposes of this study, the displace-
ment boundary conditions are applied along the x direction and are set to be equivalent to one percent
strain.

Figure 3 shows a typical random RVE microstructure analyzed using the finite element model defined in
this study. The reinforcement phase (fiber) is depicted as white to give an accent to the stress distributions
in the matrix phase which are the focus of this study. The areas in the matrix where the fibers are close
together can be seen to generate high stress concentrations.

2.2 Validation of RVE size

While micromechanical analyses are traditionally performed for the purpose of determining homogenized
material properties such as modulus for composite materials, they can also be used for other purposes
such as damage modeling and the determination of residual stresses [21; 18; 22]. The failure mechanism
in composites is, in general, governed by the matrix behavior. While composite materials are used in
design for their fiber-dominated properties such as high stiffness and fracture toughness, it is an important
consideration that the onset of failure usually occurs in the matrix phase. Damage often initiates as
matrix micro-cracking leading to delamination between plies, particularly under fatigue loading. Often the
behavior of composites in the transverse direction (perpendicular to fibers) is not considered critical in a
design process based on simple loading conditions and static strength margins. However, stress analysis
in the transverse direction can reveal important information with respect to the failure mechanisms of
composites.

The current study is focused on the onset of failure and stress concentrations in the matrix phase and
the effects of microstructural morphology on stress distributions at the microstructural level in composites.
Failure in the matrix begins at the areas with the highest stress concentrations, and the location of these
areas is highly dependent on the morphology and random distribution of fibers in the cross section as shown
in Fig. 3. The accuracy of the predicted stress distribution within the RVE is related to its size in that
the RVE must be large enough to include a representative variety of microstructural morphologies. The
current work determines the appropriate size of RVE using a convergence study based on the maximum
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von Mises stress (σv) in the matrix phase for different δ ratios, and since the fiber radius (r) is constant,
the ratio of δ is directly proportional to the RVE size. For each δ, one hundred different samples with
different microstructural morphologies were analyzed using FEM to find the maximum σv in the matrix
phase for each sample. Typical random microstructures with the same fiber volume but different values of
δ are shown in Figure 4 for Vf = 50%.

3 Results

Random microstructures under load produce stress distribution that are very different form those of periodic
or repeating microstructures under the same load. While the homogenized stiffness properties obtained
using random and periodic RVE microstructures may be similar, the maximum stresses and the distribution
of the stresses over the matrix and fiber phases are completely different. For example, in Figure 5 the
maximum stress values predicted by the random RVE model are more than twice the values predicted
by the periodic RVE model. Because failure initiation in the matrix of composite materials occurs at the
locations with the high stress concentration, it can be important to accurately predict both the magnitude
and location of these stresses.

3.1 Stress distributions in the matrix

Figure 6 compares the stress distributions in the matrix phase between random and periodic RVE mi-
crostructures for three different volume fractions. The histograms shown in Figure 6 use matrix stress and
matrix area data acquired from one hundred samples. The stresses are created by applying one percent
of tensile strain, and where the minimum distance between fibers has been set to 0.05 × r. The stress
levels and associated areas for each element of matrix phase are extracted from the model and analysed
to provide the probability of occurrence for each of the defined stress levels, which corresponds to how the
stress is distributed over the volume of the matrix (Vm). For example, Fig. 6c shows that the range of
stress values in the random microstructures is about four times larger than in the periodic microstructure.
The reason for the higher maximum stresses in the random microstructure matrix is because the fibers
can be closer together, thus creating stress concentrations. The reason for the lower values of minimum
stresses in random microstructures is that, for the same volume of matrix, because of random distribution
of fibers there are areas of matrix that participate less in carrying the load. Moreover, we can see that
the maximum matrix stress in the random microstructure in Figure 6 is more than two times that for
the periodic microstructure, which means that failure could potentially initiate at much lower loads than
predicted using a periodic microstructures RVE model. The results shown in Figure 6 are the acquired
results for one hundred samples, and this type of histogram provides a statistical estimation for stress
concentrations that can be used for failure initiation predictions.

3.2 Minimum fiber distance

Figure 3 illustrates that the stress concentrations in the matrix phase are located where the fibers are closest
together. It has been shown that minimum fiber distance has a significant effect on stress localizations for
certain loading conditions [23]. Also, the effects of minimum fiber distance, as an indicator for randomness,
has been studied with respect to changes in homogenized properties of composites [24]. In this work, we
take a statistical approach to quantify the effect of inter-fiber distance on stress concentrations. Three
different minimum distances are defined in the algorithm that are 0.1 × r ≈ 0.6µm and 0.05 × r ≈ 0.3µm
and 0.01 × r ≈ 0.06µm. In reality, the minimum distance between fibers depends largely on the specific
technique used to manufacture the composite and the overall quality of the part. Defects such as resin-rich
areas and voids have a substantial effect on microstructural morphology, forcing fibers to be located with
little or no minimum distance. This means that the stress is not distributed evenly in the microstructure
and there are areas of matrix that carry a lot of the load (where fibers are close) and areas that carry
little load (resin-rich areas). This uneven distribution of load can result in lower failure loads and is one
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d = 10 (l=60mm, r=6mm) d = 20 (l=120mm, r=6mm) d = 30 (l=180mm, r=6mm)

d = 40 (l=240mm, r=6mm) d = 50 (l=300mm, r=6mm) d = 60 (l=360mm, r=6mm)

Figure 4: Typical random microstructures with δ = l/r ratios with Vf = 50%.

of the reasons that in industries such as aerospace, where composites are used in primary load-bearing
components, there are rigorous microstructural quality controls for voids and resin-rich areas. Hojo et
al. showed that, in their samples, some fibers are almost touching (∆min ≈ 0)[23] which means high
stress concentrations and dry fibers. Also, in the study conducted by Vaughan and McCarthy [14] the
minimum distance was found to be 0.5µm that is ∆min ≈ 0.1r. The effects of minimal fiber distance on
composite properties such as residual stress and strength has been studied by Yang et. al [25], who showed
that small fiber distances have significant effects on the failure behavior. In this work, we extend this
approach to the analysis of a large number of random RVEs in order to include a large spectrum of random
morphologies. As a result, this study provides a spectrum histogram of maximum matrix stresses rather
than a single value, providing useful data for probabilistic-type analysis. Three minimum distances were
chosen to analyze possible differences in maximum stresses in the matrix phase. Three different volume
fractions of 40, 50, and 60% were used with varying values for minimum distance between fibers, and for
each case of Vf and minimum distance three hundred random microstructure RVE samples were generated
and analyzed and the maximum von Mises stress in matrix for each case extracted from the model.

Figure 7 shows the frequency (sample count in this case) of occurrence of maximum stresses in the
matrix phase for three different minimum distances and three different volume fractions. The two main
results demonstrated in this figure are the range of stress values and the magnitude of the maximum stress
values. For example, for Vf = 40% shown in Fig. 7a, and the minimum distance of 0.10r, the maximum
von Mises stress in the matrix has a range of about 45 MPa, and for the same volume fraction but a lesser
minimum distance of 0.05r this range is increased to about 50 MPa, and finally for a minimum distance
of 0.1r the range is further increased to 90 MPa. The increase in the range of maximum stresses shows
that samples with lower minimum distance are less predictable in terms of stress localization. The other
observation that can be made is that when the minimum distance is set to 0.01r the stress values are much
higher than when the minimum distance is set to 0.1r. For Vf = 50% in Fig. 7b the average maximum
stress for 0.01r is about 230 MPa and for the same volume fraction but larger minimum distance of 0.1r
the stress value reduces to 160 MPa which is about 34% lower than the average for the first set of samples.
Overall, Figure 7 shows the significance of minimum distance and micromechanical quality of samples in
terms of maximum von Mises stresses in the matrix and failure initiation.
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Figure 5: The average and standard deviation (error bars) of the maximum stress in the matrix for one
hundred samples for both random and periodic microstructure versus to δ = l/r ratio of RVE.
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(b) Vf=50%
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Figure 6: Histogram of von Mises stress in the matrix (σv) for volume fractions of 40, 50 and 60% for
both random and periodic microstructures. The minimum distance for random microstructures are set
to 0.05 × r. The stress is generated by applying ε = 1%. The random microstructure histograms are
calculated using data from one hundred samples.
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Figure 7: Maximum von Mises stress (σv) in matrix phase for three hundred random samples for each
histogram.
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