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ABSTRACT 

In airframe structures, buckling is an important design criterion and must be well determined through an accurate 

methodology. Generally, simply supported boundary condition is considered in structure sizing. This approach leads 

to very conservative buckling allowable and consequently weight and cost penalty. To overcome this issue the current 

paper focuses on the buckling behavior of stiffened symmetrically laminated composite plates under shear and in-

plane loadings, using an energy approach. To incorporate the stiffness induced by bordering structural elements, the 

stiffeners, rotational elastic restraints have been foreseen acting at plate edges. By varying the restraint stiffnesses, a 

wide range of boundary conditions from simply supported to clamped are definable. To make the formulation valid 

for moderately thick laminates a first order shear deformation displacement field has been used for the derivation of 

the total potential energy expression. The Ritz solution was then implemented to determine the equilibrium condition 

and to obtain the eigenvalue problem. The classical simply supported trigonometric displacement functions were used 

and the restraints were applied through adding the potential energy of rotational springs to the total potential energy 

expression as a penalty parameter. The results of the developed solution were then evaluated through comparison 

with the results obtained by finite element analysis, and an acceptable agreement was observed. Using the developed 

methodology a parametric study was carried out and the effect of the influential parameters such as plate aspect ratio, 

stack-up sequence, loading and restraint stiffness on the critical buckling loads of a family of laminates were studied. 

In the parametric studies equal restraint stiffness was introduced at the opposite edges which was proportional to the 

bending stiffness of the plate in the relevant direction. To present the results in the most meaningful and repeatable 

manner, non-dimensional parameters were used in parametric studies. 

1  INTRODUCTION  

One major design criterion of laminated composite panels is their buckling strength. In classical buckling analysis 

of plates or shells, the boundary conditions taken into consideration are usually either simply supported or clamped 

boundary conditions. However, in real world structures, panels are usually connected to other structural elements that 

impose additional stiffness to them and affect their stability characteristics. The effect of bordering structural elements 

are usually incorporated in structural analyses by adding elastic restraints at the boundaries of the panels under 

investigation. Diverse methodologies have been developed for studying the stability characteristics of laminated 

restrained panels and numerous parametric studies have been carried out. As one of the earliest works, Simitses and 

Giri [1] developed a methodology for buckling analysis of rotationally restrained orthotropic panels under uniaxial 

uniform compression using Galerkin method. They also performed parametric studies and found the ratio of Young’s 

moduli to restraint stiffness as the most influential parameter in buckling of rotationally restrained panels.  
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Diverse research works have been carried out on restrained composite panels by the use of Galerkin method. 

Jaberzadeh et al [2] studied the buckling of elastically restrained rectangular plates to develop a methodology for 

modeling stiffened panels or beam flanges. With the same goal, Vescovini et al [3]obtained a closed form formula for 

buckling of orthotropic restrained panels. Chen et al [4] used a weighted combination of simply supported and 

clamped shape functions  as the displacement approximation and performed a study of the influential parameters.  

The Ritz method and the principle of minimum total potential energy have also been widely presented in the 

literature as powerful approaches for buckling analysis of restrained panels. Qiao et al [5] studied the local buckling 

of rectangular composite plates loaded non-uniformly on non-restrained edges. They once again tackled the same 

problem [6] using a linear combination of the simply supported and clamped displacement fields. Qiao et al [7] also 

solved the same problem with different combination of boundary conditions. Mittelstedt [8] also used  the Ritz method 

for buckling analysis of symmetrically laminated rectangular plate under linearly varying compressive load. Shan and 

Qiao [9]  used the Ritz method with modified shape functions to investigate the buckling problem of laminated plates 

with diverse combinations of boundary conditions from simply supported to clamped. Qia et al [10] used the Ritz 

method to develop  closed form solutions for different combinations of free, simply supported and restrained boundary 

conditions and found the closed form solution in excellent agreement with numerical solutions. Villarreal et al [11] 

analytically studied the buckling problem of orthotropic laminated plates with different boundary conditions  under 

biaxial loading. It was concluded that taking into account the restrained boundary conditions, a reduction in design 

conservatism can be achieved. Stamatelos et al [12] also adapted the Ritz method for investigating buckling and post 

buckling behavior of isotropic and symmetrically laminate plates with arbitrary boundary conditions. 

Considering the inflexibility of the Ritz method with regard to boundary conditions, penalty function method has 

been used in some works to impose various boundary conditions  [13], [14]. Applying boundary conditions through 

penalty functions makes it possible to take benefit of functions with faster convergence rate. 

Most of the research works conducted in the area of restrained panels have used either the Ritz or Galerkin 

methods, however in some works other analytical approaches have been followed. Chai et al [15] used a semi-energy 

method to study the stability of symmetrically laminated composites with restrained edges. They investigated the 

effect of buckle half wave lengths and unloaded edge restraints. Bank et al [16] used the stability differential equation 

and studied the buckling problem of orthotropic laminates under uniaxial compression with a specific combination of 

edge conditions. Qiao et al[17] analytically studied the buckling problem of discrete laminated panels and panels of 

fiber-reinforced plastic (FRP) structural shapes and developed a formulation for explicitly calculating restraint 

coefficients for I and box sections.  

Apart from analytical approaches, some semi-analytical and numerical investigations of restrained laminated 

plates have also been carried out. Examples of such works are, the use spline finite strip method by Mizusawa et al 

[18] and by Chen and Qiao [19]. Housner and Stein[20] also developed a finite difference program for calculation of 

buckling load of variable thickness orthotropic panels. 

Majority of published works in the restrained plate buckling literature are based on the classical plate theory. In 

the current work a first order shear deformation theory is used. The implemented theory makes the solution valid for 

moderately thick laminates. Using the developed formulation a parametric study on a specific class of laminates has 

been carried out and the results are demonstrated in terms of non-dimensional parameters.  

2 Formulation 

In order to model the buckling behavior of curved laminated composite plates, the Ritz method which is based on 

the principle of minimum total potential energy is used. The formulation is developed based on a first-order shear 

deformation displacement field. 

 



 

3  

BUCKLING OF ROTATIONALLY RESTRAINED LAMINATED 

COMPOSITE FLAT PANELS UNDER MULTIAXIAL LOADINGS 

2.1 Kinematics of flat plate 

 
According to the first-order shear deformation theory the displacements are assumed to be of the form 

 

 �	 = 	��(�, �) + �� (1) 

 �	 = 	��(�, �) + ��� (2) 

 � = ��	(�, �) (3) 

 

where u and v are in-plane displacements and w is the out-of-plane displacement. The parameters denoted by 0 are 

the displacements associated to the mid-plane of the laminate. ϕx and ϕy are the rotations of the normal cross-section 

around Y and X axes respectively.  

According to the displacement field introduced above, the linear mid-plane strains and plate curvatures within the 

laminate are expressed in terms of displacements as 
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The out-of-plane shear strains are  

 
��� = ����		���� =  �� + ����� 			� + ����� 	!� 

 

(5) 

Considering the nonlinear nature of the buckling phenomenon nonlinear in-plane strains are also used in the buckling 

analysis. These nonlinear strains denoted by superscript ´ are expressed as 

 � ´ = ��́ 		��́		��´ �� = �12 %����� &' 			12 %����� &' 			%����� &%����� &�� 

 

(6) 

 

2.2 Constitutive equation 

 
Considering that the thickness of the plate is h and it consists of several sublayers of equal thickness, in the case 

where the origin of the coordinate system is located on the mid-plane of the laminate and Z is the plate normal, the 

elements of the stiffness matrix of the laminate are obtained using the formula 

 
(A*+, B*+, D*+. = / 01,2(1, 3, 3'4/'

64/' )7� 

 

(7) 

where Qij are the elements of the reduced plane stress stiffness matrix of each sublayer.  

In a similar manner the elements of the stiffness matrix related to transverse shear deformation are calculated through 

 

 H*+ = � / 91,24/'
64/' 7�				:;<			= = 4,5 (8) 



 

where C is the complete stiffness matrix of each ply and k is the shear correction factor which has been assumed to 

be 2/3 throughout the present work. 

The constitutive equation used here is that of shear deformation laminate theory as follows: 

 

 
@�A��B�C = DEF���  

 

(9) 

Where	DEF =  DGF DHFDHF DIF! and @�A��B�C = �A 	A�	A�	B	B�	B�	�� 

And Nx, Ny and Nxy are membrane force resultants, and Mx, My and Mxy are the moments around Y and X and the 

twisting moment respectively. 

Subsequently the constitutive equation for transverse shear is as follows: 

 
@00�C = DJF���  

 

(10) 

where Qx and Qy are resultant shear forces on XZ and YZ cross-sections respectively. 

 

2.3 Total potential energy 

Considering a and b as the plate dimensions parallel to X and Y axes respectively, the total potential energy of the 

plate is expressed as 

 

 
K = L + LM + N 

 
(11) 

where U is the strain potential energy, Ur is the potential energy of rotational springs and V is the potential energy 

associated to stress stiffening.  

The strain energy of a plate with aforementioned geometrical dimensions is given by  

 
L = 12OP����DEFQ	R

�	�
���7�7� + P����DJFQ	R

�	�
���7�7�S 

 

(12) 

In equation (12) the first integral is the potential energy of in-plane strains and the second integral represents the 

potential energy of the out-of-plane shearing deformation. The expression for the potential energy of rotational springs 

is  

 
LM = 12T/ DU�(�'|W�) + UQ(�'|WQ)FR

� 7� + / �U��(��'|�W�) + U�R(��'|�WR)�Q
� 7�X 

 

(13) 

Where Kx0, Kxa, Ky0 and Kyb are rotational stiffness of springs as shown in figure (1).   

The energy associated to stress stiffening which couples the in-plane stress field to the out-of-plane displacement is 
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 N = P �A���Y�´ZQ	R
�	�  (14) 

 

Where 	�A�� = �A�	A��	A�� �� is the pre-buckled stress which here is assumed to be equal to the applied load at the 

boundaries.   

.  
Figure 1. Geometry of rotationally restrained panel 

2.4 The Ritz method 

When using the Ritz method the solution is sought in the form of a series of arbitrary displacement functions that 

satisfy the essential boundary conditions. The geometric boundary conditions considered in the current work are 

 

 

At x=0, a        w=0 

At y=0, b        w=0 

 

(15) 

Thus as the geometric boundary conditions are similar to that of a simply supported plate, the trigonometric functions 

used for simply supported boundary condition are used for restrained panels too. The functions used are. 
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f
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h

\Wg  
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f

]Wg
h

\Wg  

�� = [ [ 9\] sinab�c cos db�e
f

]Wg
h
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(16) 

Where M and N are respectively the number of terms used in X and Y directions and Amn, Bmn and Cmn are coefficients 

to be determined through the Ritz method. 

Substituting equations (12), (13) and (14) in equation (11) we will have the general expression of the total potential 

energy in terms of displacements and by substituting equation (16) in that expression we will have the same expression 

in terms of  Amn, Bmn and Cmn. According to the Ritz method and the principle of minimum total potential energy the 

solution can be sought by minimizing the total potential energy with respect to the undetermined coefficients.  

 
klkmn,o = 0 ,  

klkqn,o = 0, 
klkrn,o = 0 (17) 



which is a 3M×3N system of equations with a trivial solution. Setting the determinant of the coefficients of the system 

of equations to zero the critical buckling load and the mode shape associated to it will be determined. To do so for 

uniformly applied loads {N0} is expressed as 

 �A�� = s�d��  (18) 

where �d�� 	= 	 Dd�	d�	d��F�is the vector which defines the proportion of each load type in the pre-buckled state. 

In order to transform the system of linear equations (17) to the form a classical eigenvalue problem, by substituting 

equation (18) in equation (17) and rearranging the equations they can be rewritten in the form  

 

�(L + LM)�G\] + 	s �N�G\] = 0 �(L + LM)�H\] + 	s �N�H = 0 �(L + LM)�9\] + 	s �N�9\] = 0 

 

(19) 

Putting these equations in a matrix form we will have 

 
DU + sUtF O�G\]��H\]��9\]�S = �0�uh×uf 

 

(20) 

where K is composed of the first terms in equation (18) and Ks is the matrix composed of the second terms of the 

same system of equations. 

 

 

3 Results and discussion 

In the current work in order to bring more generality to the investigations, the results are presented in the form of 

non-dimensional variables that define the buckling behavior of laminated curved plates [21]. The non-dimensional 

parameters that influence the buckling strength of a panel in terms of physical variables of buckling analysis are  

 w = ce %	I''Igg &g/x
 (21) 

 y = Ig' + 2Izz{I''	Igg  (22) 

 � = Igz(IgguI''.g/x (23) 

 | = I'z(IggI''u.g/x (24) 

 N~  = A�e'
b'(IggI'')g '⁄  (25) 

 N~ � = A��c'
b'(IggI'')g '⁄  (26) 
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 N~ � = A�� e'
b'(IggI''u.g x⁄  (27) 

 U� = cUIgg  (28) 

 U�� = cU�I''  (29) 

 

In the above, α is the non-dimensional aspect ratio, β is bending orthotropy and γ and δ are bending anisotropy 

parameters. N̅x, N̅y and N̅xy are the non-dimensional buckling coefficients. K̅x and K̅y are non-dimensional rotational 

stiffness applied at boundaries parallel to Y and X respectively. 

For parametric studies, buckling of laminates with two stacking sequences (±45/±45/45)s and (±70/±70/70)s were 

investigated thoroughly. β, γ and δ of the (±70/±70/70)s laminate are 1.37, 0.07 and 0.166 respectively these values 

for the (±45/±45/45)s are 2.4, 0.22 and 0.22. 

In the first step the effect of plate aspect ratio on the buckling strength of restrained plates was investigated. To do 

so the buckling loads were calculated for various values of non-dimensional variable α while keeping other non-

dimensional values constant. To apply rotational restraint at the boundaries, rotational stiffnesses were applied in a 

way that K̅x and K̅y are equal at all edges. Figure 2 depicts the variation of the axial buckling coefficient versus α. 

Figure 3 shows the same results for buckling under shear stress. The behavior of the laminates under combined shear-

axial loading were also investigated. This latter study was done for the specific case of α=1. Figure 4 depicts these 

results. 

 

 
Figure 2. Variation of non-dimensional axial buckling load with non-dimensional aspect ratio for (±70/±70/70)s (left ) 

and (±45/±45/45)s (right) laminates 
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Figure 3. Variation of non-dimensional shear buckling load with non-dimensional aspect ratio for (±70/±70/70)s (left ) 

and (±45/±45/45)s (right) laminates 

 

 
Figure 4. Interaction curve of shear and axial buckling for (±70/±70/70)s (left ) and (±45/±45/45)s (right) laminates 

 

Figure 5. Interaction curve biaxial loading. Left (±70/±70/70)s and right (±45/±45/45)s laminates 

0

10

20

30

40

50

60

70

0.500 1.000 1.500 2.000 2.500 3.000

N
� xy

w
0

10

20

30

40

50

60

70

0.500 1.000 1.500 2.000 2.500 3.000

N
� xy

w

SS

K�=10

K�=20

K�=30

K�=40

K�=100

Clamped

0

2

4

6

8

10

12

14

16

18

20

0 1 2 3 4 5 6 7 8 9 10 11 12

N
� xy

N� x

0
2
4
6
8

10
12
14
16
18
20
22
24
26
28

0 2 4 6 8 10 12 14 16

N
� xy

N� x

SS

K�=10

K�=20

K�=30

K�=40

K�=100

Clamped

0

2

4

6

8

10

12

0 2 4 6 8 10 12

N
� y

N� x

0

2

4

6

8

10

12

14

0 2 4 6 8 10 12 14

N
� y

N� x

SS

K�=10

K�=20

K�=30

K�=40

K�=100

Clamped



 

9  

BUCKLING OF ROTATIONALLY RESTRAINED LAMINATED 

COMPOSITE FLAT PANELS UNDER MULTIAXIAL LOADINGS 

 

4 Acknowledgement  

The authors gratefully acknowledge that this research was conducted by the support provided by 

MITACS, Bombardier Aerospace and Concordia University. 
 

 

5 Concluding remarks 

The present work has been an attempt to implement the Ritz method for modelling the buckling behavior of 

symmetrically laminated panels and also to investigate the effect of various parameters on the buckling load carrying 

capacity of rotationally restrained cylindrically curved panels. Through the derivation and parametric studies 

following points were concluded. 

• In all cases studied it was observed that a non-dimensional boundary stiffness of about 600-700 is enough for 

simulating a fully clamped boundary condition and further increasing the stiffness may result in less accurate 

results due to numerical errors. 

• By slightly increasing the boundary rotational stiffness, at first a sharp rise in the buckling load is observed, 

however for higher stiffness values this variation is less pronounced. 

• The application of restraints not only changes the buckling critical load but also shifts the location of kink 

points on aspect ratio-buckling load graphs. In other words it affects the mode shapes experienced and the 

transition between different mode shapes. 

• In the cases that were studied in the current research, it was noticed that the influence of rotational restraints 

on shear buckling is much less than their influence on axial buckling. 

• The range of results obtainable using different stiffness values show that using simply supported boundary 

conditions in structural analyses may lead to drastic design conservatism. 
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