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ABSTRACT 

 Predicting the behavior of dry fibers in different conditions is a key aspect of process modeling of 

composite materials. However, predicting the behavior of bundles consisting of thousands of individual 

filaments can be very costly in terms of computer power. A new method multi-scale is proposed that feature 

embedded beam elements in truss elements. Very small beams are used to model the flexion while truss 

elements allows to estimate traction and contact responses. This method is compared and benchmarked 

against estimations given by pure beam and pure truss models and a reference case. The embedded elements 

seems to provide a better estimation as the cumulative error over all the chosen indicators is much less than 

pure beams and truss. 
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INTRODUCTION 

With the ever-increasing need of reducing carbon emission, many industries are working towards 

structure weight reduction. Designing new structures using composite materials seems to be part of the 

solution. Thanks to their very good specific strength and stiffness, composite materials allows designers to 

reach new levels of structure optimization that were not achievable with classical materials. However, 

composite materials feature multiple scales which can complexify the computation of their behavior. 

Usually three main scales are considered. The macroscopic scale, which corresponds to the structure scale 

(a full plane, building, or even a specific part of it). The mesoscopic scale, corresponding to the fabrics 

scale. Finally, the microscopic scale where the individual filaments are considered. 

Author usually address this separation of scales problem by using homogenization methods. These 

can take the form of full field homogenization methods (Moulinec and Suquet 1994; Moulinec and Suquet 

1998; Feyel 2003). Or mean filed homogenization methods (Mori and Tanaka 1973; Castañeda and Willis 

1999; Ghossein and Lévesque 2014). These methods allows the estimation of the effective properties of 

composite materials in structural problems where the fibers are immersed in a solid polymer matrix. But 

they are not suited for the modelling and prediction of the behaviour of dry fibers. In the absence of a 

linking matrix, the behaviour of the composite is very different as the filaments are free to move in 

independent motions. This specificity of dry fibers induce a need of specific methods to fully capture their 

behavior. It is for example very hard to model the flexion behaviour of a tow as the second moment of area 

will be too high to match the flexion capabilities of individual filaments  

Dry fibers have been studied a lot in ballistics (Zhou, Sun et al. 2004; Nilakantan, Keefe et al. 2010; 

Wang, Miao et al. 2010; Nilakantan 2013), Zhou et al. (Zhou, Sun et al. 2004) developed the so-called 

Multi-chain digital element method where they aim at approximating the behaviour of filaments by using 

assemblies of very small truss elements. This approach addresses the flexion problem by removing it 

completely as truss nodes cannot transfer flexion moments. Wang et al. and Grujicic et al. obtained very 

promising results using this method but their work has also received criticism because of the strong 

hypotheses that are associated with the use of truss elements (Nilakantan 2013). Other authors used an 
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approach based on beam elements (Döbrich, Gereke et al. 2016). In their approach, the tow is discretized 

and represented as a bundle of beam elements and a convergence study is conducted. Finally some authors 

adopt a full scale approach by modelling every individual filaments (Nilakantan 2013). This approach, 

while probably being the most accurate cannot realistically be applied to most of the composite materials 

because of the very high number of filaments involved. Indeed, carbon fiber tows usually feature from 3000 

to 12000 filaments the number of degrees of freedom needed to fully model such a material would be 

complicated with today’s calculation capacities.  

 In this work, we propose an approach similar to the one used by Döbrich et al.(Döbrich, Gereke et 

al. 2016) as we want to estimate the behavior of tows with a limited number of elements in the cross section. 

The novelty is that we propose to used embedded elements by embedding a small beam into a larger truss 

element. Embedded elements were initially developed by Fish (Fish 1992; Fish, Markolefas et al. 1994) in 

what he called the s-version of the FEM. By superposing two meshes, he was able to reach a higher 

convergence rate by avoiding excessively deformed elements in regions where very little space is available. 

This method was later used with success by Tabatabei et al. (Tabatabaei, Lomov et al. 2014) in the context 

of composite materials and their homogenization.  

 The first section of this paper is dedicated to the definition of the methodology used to benchmark 

our approach. Then, in a second section, the embedded beams are explicitly defined, in a third second 

section, we address the validation of the reference case. Finally, in a fourth section, results obtained by this 

method are presented and its performance is benchmarked against three models: a full beam, a full truss 

and a reference case. 

1 METHODOLOGY 

To benchmark the proposed approach, it was decided to put the braid in tension over a square 

sectioned analytical solid. The solid corresponding to an ideal mandrel over which the braid would be put 

before injecting the resin. The solid has a 1.5875 mm side and is infinitely long. Four cases were tested: 

The reference (beam elements, matching the real filaments geometry) with 100 filaments per tow, a truss 

elements model with 7 filaments per tow, a beam elements model with 7 filaments per tow,  and finally an 

embedded elements model with 7 filaments per tow. Three parameters are studied to benchmark the 

elements: The braid thickness, the angle between the tows and the final length of the braid. The braid 

thickness is an important parameter as it need to be known in order to correctly design the mold that will 

be used to inject the resin. The angle between the tows has a strong influence on the mechanical properties 

of the final piece. Finally the final length was chosen as it provides a good estimation of the dry braid 

stiffness. 

2 MODEL DEFINITION 

 
Figure 1: Representation of a section of the embedded filaments, the central beam is used for its contribution to the 

bending stiffness while the external truss elements are use for their contribution to tensile stiffness and contact 

resolution 
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The idea behind the use of embedded beam elements to model filament bundles is that when a dry 

tow is bent, the bending stiffness should be close to the one of a single filament. Since they are free to 

move, the filaments can easily spread. Their contribution to the bending stiffness is therefore highly 

decreased. However, every single filament contributes to the tensile stiffness and therefore this contribution 

can be modelled by the equivalent section of a truss element. This embedded structure (see Figure 1) is 

achieved by superposing two meshes, one made of truss elements, and one made of beam elements. All the 

degrees of freedom (d.o.f.) of the superposed nodes are then linked using multi-points constraints. 

 
2.1 Braid geometry and material 

The braid considered in this work is a 12 tows braid with 100 filaments per tow. Each tow initially 

forms a 55° angle with the braid axis. The braid’s internal radius is 3mm. The fibers used were chosen to 

match the mechanical properties of commercial glass fibers (ECD900MM 620-1, AGY). The mechanical 

properties used are reported in table 1. 

Table 1 Mechanical properties used for the glass fibers 

Mechanical property Value 

Young Modulus 72 GPa 

Poisson Ratio 0.23 

Density 2.58 g.cm3 

Filament radius (beam elements) 2.5 μm 

 
2.2 Boundary conditions 

The model presented here corresponds to a representative section of a longer braid. In order to 

accurately represent its behaviour, it is necessary to use periodic boundary conditions (PBC). These 

conditions ensure that both ends of the braid are virtually connected, therefore effectively representing an 

infinitely long braid. These conditions can be implemented by using linear equations. One needs to 

introduce a so called “dummy node” 𝑢𝐷𝑢𝑚. Let 𝑢𝑖
𝑃 (respectively 𝑢𝑖

𝑃′) be the nodal variables corresponding 

to the degree of freedom (𝑑. 𝑜. 𝑓.) 𝑖 and the node 𝑃 (respectively its corresponding node on the other side 

𝑃’), then the periodicity of the displacement field can be expressed as: 

 

𝑢𝑖
𝑃 − 𝑢𝑖

𝑃′+𝑢𝑖
𝐷𝑢𝑚 = 0, ∀ 𝑖 ∈   {𝑑. 𝑜. 𝑓. }         (1) 

 

It is therefore possible to impose a periodic strain by imposing a value on any degree of freedom of 𝑢𝐷𝑢𝑚.  

3 MODEL VALIDATION 

Three main parameters are studied in this work: The braid thickness, the angle between the tows and 

the braid axis and finally the final length of the braid. To validate the convergence, the evolution of these 

three parameters was studied using four mesh refinements: 31, 61, 91 and finally 121 elements per filament. 

The relative change between two steps is defined as: 

 

𝑅𝑐 =  100
|𝑎𝑖−1−𝑎𝑖|

𝑎𝑖              (2) 

 

where 𝑎𝑖 is the value taken by the observed parameter at the ith convergence iteration. Convergence 

is considered achieved when 𝑅𝑐 gets lower than a 95% trust interval, which can be written as 
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𝑅𝑐 <  100
2𝜎

𝑎𝑓√𝑛
                     (3) 

 

where 𝜎 is the averaged standard deviation, 𝑛 is the number of measurements and 𝑎𝑓 is the value 

obtained for 121 elements per yarn. Here, 𝑛 = 6 for every parameter. An exception had to be made for the 

length convergence since no trust interval can be defined as the PBC intrinsically impose that the distance 

between the extremities of the filaments will be exactly the same thorough the whole model. In this case, 

an arbitrary value was chosen as 0.5%. 

 

Figure 2: Convergence study of the reference case. The black in each graph corresponds to the relative 

change between two iterations, the gray, dashed, line corresponds to the measured values and the red-dashed line 

corresponds to the convergence criterion value as defined in equation 2. a): Angle convergence, b) Thickness 

convergence, c) length convergence. 

 

The Figure 2. displays the evolution of 𝑅𝑐 for every parameter as a function of the number of 

filaments per tow. The Figure 2a) corresponds to the angle relative changes, the Figure 2b) to the thickness, 

and finally, the Figure 2c) displays these results for the length. The red-dashed line corresponds to the 

convergence criterion as defined in eq. 2, the black line corresponds to the relative change between two 

iterations and the gray-dashed line corresponds to the measured values. For every parameter, the 

convergence behaviour is well defined as 𝑅𝑐 exhibit a strong negative slope. Based on the results shown in 

Figure 2. It was decided to use the 91 elements per filament configuration for the rest of this study. 

4 RESULTS 

4.1 Visual comparison 

The first validation step is to qualitatively compare the results obtained. The Figure 3 shows the 

different results obtained when the different braids are tighten on the analytical solid using horizontal 

tension. The truss elements (Figure 3c) result displays a strong lack of bending stiffness, which resulted in 

the noisy disposition of the filaments. Many small curvatures can be observed making it visually very far 

from the reference. The beam elements (Figure 3b)  results are much closer in terms of overall organization, 
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yet one can observe that in the corners of the analytical solid these elements are too stiff. This is not 

surprising considering that their radius is much larger than the real filament radius. Finally, the embedded 

elements  (Figure 3d) solution seems to be the closest to the reference case. In this case, the individual 

filaments seems to exhibit enough stiffness to remain straight on the faces of the analytical solid yet still 

have the ability to bend on its corners. 

 

4.2 Angle comparison 

 

Figure 4: a) Average angle (°) measured in the different models, the error represents a 95% trust interval. b) Relative 

avergage error (%) between the 7 filaments model and the 100 filaments reference 

 
The Figure 4a) displays the average angle measured within all the models. Both the beam and 

embedded models gives reasonable estimations of the angle as they are both within the error bars of the 

reference. The truss model estimate is however slightly too large. This can probably be attributed to an 

increase in friction between filaments as the the truss solution is very chaotic.  

Figure 4b) shows the same results, but expressed as relative error (%) between the 7 filament cases 

and the reference. Similarly to what can be seen in Figure 4a), the beam and embedded estimates are better 

than those of the truss model, with an error 5 times lower for the embedded model and 22 times lower for 

the beams. Overall, the data displayed in Figure 4 tends to show that truss element would not be 

  

a) b) 

d) c) 

Figure 3: Comparison between the reference case and the different types of elements a): Reference case, 100 

filaments per tow, beam elements matching the real filaments. b) Beam elements, 7 filaments per tow. c) Truss 

elements, 7 filaments per tow. d) Embedded elements, 7 filaments per tow 

a) b) 
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appropriated to model braids. It is however impossible to know which model is better between beams and 

embedded with only the angle data as their estimation fall under the boundaries of the 95% trust interval. 
 

 
4.3  Thickness comparison 

 

Figure 5a) shows the average thickness (mm) measured in the different models. This thickness was 

measured in six different positions corresponding to where the individual crossover. The error bars 

corresponds to the 95% trust interval, Figure 5b) shows the average error when comparing the 7 filament 

solutions to the 100 filament reference. The worst estimation comes from the truss elements. This high error 

is most likely caused by the lack of stiffness. The noisy distribution preventing filaments from having a 

smoother organization and therefore creates a thicker bundle. The beam results also overestimate the 

thickness. This is most likely attributable to the overestimation of the bending stiffness. The embedded 

elements estimation is better in terms of average error but it is underestimating the thickness. This can be 

explained by the better bending ability of the embedded elements when compared to beams while keeping 

a relative bending stiffness which prevents noise. It is likely than by adding more and more filaments, the 

beam results would converge by decreasing and the embedded element would converge by increasing.  
 

4.4 Lenght comparison 

The last parameter that was studied in this work is the braid’s length at the end of the virtual 

experiment. This parameter can be associated to the effective stiffness of the braid as a constant force is 

applied thorough the model run.  The Figure 6a) shows the length (mm) measured between both ends of 

the filaments compared by type of elements, and Figure 6b) shows the relative error (%) when comparing 

these lengths to the reference case. Here, the problem associated with the beam too high stiffness is very 

visible. Indeed both the truss and embedded elements results gives estimation within a 5% error while the 

beams gives a very under-estimated length with a nearly 20% error. It is also interesting to note that the 

embedded elements are able to almost exactly estimate the final length with an error of 0.33% when 

compared to the reference solution. 

 

Figure 5a) Average thickness (mm) measured in the different models, the error represents a 95% trust 

interval. b) Relative avergage error (%) between the 7 filaments model and the 100 filaments reference 

  

a) b) 
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4.5 Calculation time and cumulated error 

 

 
Figure 7a) shows the calculation time of each model, and Figure 7b) shows the cumulated error for 

each model (sum of the values displayed in Figure 4b, 5b and 6b). The truss model is the one that runs the 

faster, it is able to give an estimation in 29 seconds. It is, however, the model that is the farthest from the 

reference, with a cumulated error of 79.19%. The Beam model comes second, with a running time of 105 

seconds. It is still relatively far from the reference with a cumulated error of 54.79%. The slowest model is 

also the closest to the reference, it is able to reach a cumulated error of 25.19% while still being more than 

8 times faster than the reference. This probably means that the embedded model would converge faster 

when adding more filaments in the cross-section.  

Figure 6a) Length measured from one end to another of each filament. There is no error bars in this plot since 

the length is imposed as the same by the PBC. 6b) Average length error when comparing the 7 filament estimations 

with the 100 filament reference 

  

  

Figure 7 a) Calculation time of each case presented in this paper b) cumulative error of each 7 filament model 

when compared to the reference solution 

a) b) 

a) b) 
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CONCLUSION 

We propose in this work, a way of accurately modelling filament bundles. The methodology consists 

in using embedded elements to model the different contributions of the filaments individually and as a 

group. Using a small beam element in the center allows an accurate modelling of the filament bending 

stiffness while a larger rod element models the longitudinal stiffness of the bundle. A 7 filament bundle 

was compared to a 100 filament reference case (using an equivalent total cross-section area) and the 

embedded approach proved to be better than a full beam or truss approach. A limit of this approach could 

be that the gain in precision is achieved by effectively doubling the number of nodes and therefore could 

induce a lesser calculation time over precision ratio than traditional approaches. Future works will be 

dedicated to the study of the convergence rate of each approach (as a function of the number of filaments 

used to model a full bundle) as well as the calculation time over precision ratio with different configurations. 

An experimental confrontation is also planned as future work. 
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