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ABSTRACT 

 In the pursuit of improved quality and performance of textile-reinforced composites, a great deal of 

effort in industry has been dedicated to understanding the behaviour of these materials during different 

stages of manufacturing. In doing so, the direct measurement of the generated defects often represents a 

challenge, specially for parts with complex shapes, to which Fused Deposition Modelling (FDM) using 

conductive polymers may prove to be a solution. This study presents the initial results towards developing 

printed strain sensing elements into textile preforms, through a fractional factorial design of experiments 

approach to determine the parameters which have the greatest influence over the concurrent mechanical 

and electrical properties of the 3D printed sensor material, made of a Conductive Polymer Composite of 

Graphene and PLA. The percent contributions of each printing parameter were calculated with regard to 

the select performance properties, which included resistance of the sample, peak load, extension at the peak 

load, toughness, gauge factor and range of constant gauge factor. Finally, three different Multi Attribute 

Decision Making (MADM) methods and the Entropy weighting were used to determine which parameters 

would merit highest interest for sensor optimization, by creating an objective ranking of the parameters 

based on the percent contributions. The overall influence ranking was as follows: 1. Layer Height, 2. 

Extrusion Multiplier, 3. Nozzle Temperature, 4. Print Speed.  

 

KEYWORDS: Fused Deposition Modeling, Embedded Sensors, Textile Composites, Multi Attribute 
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1 INTRODUCTION 

Textile composites are an essential type of fiber reinforced polymer composites (FRP). Textile FRP’s 

offer improved impact resistance, shear strength, stiffness (Ekşi and Genel 2017), and formability (Yu et 

al. 1994a, 1994b) over unidirectional fibers. However, woven fabrics also introduce greater complexity into 

the prediction and modeling of the reinforcement due to motion of the fibres and out of plane forces (Realff 

et al. 1997). This additional complexity also makes the validation of these models relatively difficult 

compared to traditional engineering materials, such as aluminum and steel. Principally, methods for 

validation rely on optical techniques, such as those used by Ivanov et al. (2009) for the confirmation of a 

Finite Element simulation. While these systems offer an abundance of information for validation purposes, 

they are limited by the need for line of sight with the specimen. This limits their use in the validation of 

forming simulations where areas of interest are likely obscured by forming equipment.  
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While providing significantly less information than optical methods, strain-based sensors can still 

provide some of the information necessary for the validation of mathematical models, as is commonly 

employed for traditional materials. Like with traditional materials, strain sensors can also be used for in-

situe monitoring which is often not practical with optical methods. Many of these sensors are constructed 

from either an electrically conductive material or a fiber optic, which are then woven into the textile of 

interest (El-Sherif et al. 2000), or bonded to its surface (Cochrane et al. 2007). Strain gauges for traditional 

materials are usually metal-based, but for textiles the use of Conductive Polymer Composite (CPC) based 

sensors have drawn greater interest (Cochrane et al. 2010; Mattmann et al. 2008).  

The use of CPC’s creates several possibilities for the creation of the textile-embedded sensors. 

Previously mentioned studies (Cochrane et al. 2010; Mattmann et al. 2008) utilized CPC solution masking, 

or bonding using a silicone film, both being manual processes. Additive manufacturing, specifically Fused 

Deposition Modeling (FDM), represents a powerful alternative to these manufacturing processes, and CPC 

based strain sensing structures have already been created using FDM. Leigh et al. (2012), using 

polycaprolactone (PCL) polymer mixed with Carbon Black (CB), created a series of sensors including a 

piezoresistive flex sensor and found that the change in resistance of the material under strain was 

significantly lower than that of conventional sensor materials. McGhee et al. (2018) found that the type of 

filler can result in larger relative changes in resistance for a given strain. The researchers compared PLA 

loaded with graphene and CB, and found that graphene resulted in larger relative changes in resistance than 

the CB. The graphene material was significantly more conductive, 321 Ohm vs 1785 Ohm for a1mm thick 

sample, meaning that magnitude of change was not as drastic. A commercially available blend of graphene 

filled PLA was also used to create an embedded strain sensor by Gooding and Fields (2017), and they found 

that the build orientation of the samples had an impact on the sensor’s electrical characteristics. Specifically, 

there was a large variation between when the load was applied parallel to the layers and when it was applied 

perpendicular to the layers. In the current literature, this is one of few examinations of the 3D printing 

parameters’ effect on the electrical characteristic of the CPC. 

The printing parameters have been examined in a number of different studies with respect to the 

resultant mechanical properties of the printed part, as summarized by Mohamed et al. (2015). Many of these 

studies have found that the layer thickness has an influence on mechanical properties of the finished part. 

Most such studies, however, have focused entirely on the pure polymers, and a few studies on polymer 

composites (PC) have shown that other process parameters can also have an impact on the resultant 

mechanical properties. Ning et al. (2017) showed that the nozzle temperature and print speed can, along 

with layer height, have an impact on the mechanical properties of a fiber reinforced PC. Their study, 

however, neglected interaction between printing parameters by using a One Factor At a Time (OFAT) 

approach. Mohamed et al. (2016) showed that these interactions can be statistically significant.  

The present article contains preliminary findings from a fractional factorial design of experiments 

methods on conductive polymer composite specimens manufactured using FDM additive manufacturing. 

The exploratory study of the FDM parameters was evaluated against both mechanical and electrical 

properties. The results of these experiments were then evaluated using a series of Multiple Attribute 

Decision Making (MCDM) methods to objectively determine parameters which merit further investigation 

as part of our longer-term research program on the development of self-sensing textile preforms using fused 

deposition modeling. 

2 EXPERIMENTAL PROCEDURE 

2.1 Printed Specimens 

All experiments were performed using a CPC called BlackMagic 3D filament from Graphene labs, 

which is a PLA with graphene filler. The manufacturer reports that this filament has a conductivity of 0.6 

ohm-cm as well as providing a number of recommended printing parameters. These recommended 

parameters were used in the design of a two-level fractional factorial set of experiments. A full factorial set 

of experiments was not used due to the preliminary nature of these experiments as well as the cost of the 
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material (approximately $1/gram vs. $0.3/ gram for other conductive filaments) and its availability. The 

factors used are summarized in Table 1 below.  

Table 1 Summary of printing parameters varied for fractional factorial design of experiments 

 
Nozzle 

Temperature (°C) 

Layer Height 

(mm) 

Print Speed 

(mm/min) 

Extrusion 

Multiplier 

Manufacturer 

recommended 
195-200 0.1-0.2 2000 1.1 

High 220 0.3 2200 1.15 

Low 190 0.1 1800 1.05 

 

The parameters were chosen both in accordance with the literature, such as in Ning et al. (2017) and  

Mohamed et al. (2016), and for influence on the volume of material extruded (i.e. Extrusion Multiplier). 

Other process parameters were kept constants between the samples and are summarized below.  

Table 2 Constant process parameters 

Parameter Value Parameter Value 

Nozzle diameter 0.8mm Extrusion width 0.96mm 

Build Platform Temperature 60°C Filament Diameter 1.75mm 

Build Platform Surface Blue Masking Tape   

 

The specimens in question were ASTM D638 Type V samples. The rasterization of each layer using 

Simplify3D software was kept constant, and can be seen in Figure 1 with only the number of layers 

changing with thickness of those layers. The gcode was also generated using Simplify3D. 

 

 

Figure 1: Rasterization of ASTM D638 Type V specimen 

The printer used is a modified MakerGear Mk2 printer with a customized heated bed, an E3D V6 

hot-end and Titan extruder. Table 3 shows the parameters used in the creation of the samples for the half 

factorial experiments used in this study. The extrusion multiplier was purposely aliased with the interaction 

of the other parameters to create the half factorial experiment. 

Table 3 Specimen printing parameters 

Specimen 

No.  

Nozzle 

Temperature (°C) 

Layer 

Height(mm) 

Print Speed 

(mm/min) 

Extrusion 

Multiplier 

1 220 0.3 1800 1.05 

2 220 0.3 2200 1.15 

3 190 0.1 1800 1.05 

4 190 0.3 1800 1.15 

5 220 0.1 2200 1.05 

6 190 0.3 2200 1.05 

7 220 0.1 1800 1.15 

8 190 0.1 2200 1.15 
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2.2 Characterization Tests 

As a test of the feasibility of using the FDM process for the creation of a strain sensor on a textile, a 

sample was created on a sample of dry Twintex woven fabric, which is made of E-glass fibers comingled 

with polypropylene fibers. The sample was created using the manufacturer recommended settings for 

temperature and speeds of the CPC. Small loads applied by hand were able to be detected, however when 

subjected to load using a tensile machine, the sensor failed below 1% strain on the fabric. The results of 

this test were taken into consideration (i.e. the toughness and the extension at peak load) when selecting the 

subsequent characterization methods as follows. 

The mechanical characterization of the 3D printed polymer was done in accordance with ASTM 

D638 tensile test using a strain rate of 1mm/minute. The tensile testing machine used was an Instron 5969 

universal load frame with a 50kN load cell and double action wedge grips. Said grips were modified by 

adhering sand paper to the surface of the grips in order to electrically isolate the specimen during testing 

while trying to eliminate its slipping. Electrical measurements were taken with both a digital multimeter 

(BK Precision Test Bench 390A), and an Arduino UNO, which was used for datalogging purposes. The 

Arduino recorded the resistance by way of a voltage divider circuit, as shown in Figure 2, with the resistance 

being calculated using equation ( 1 ). 

 

 

Figure 2: Circuit divider for resistance measurement 

𝑅2 =
𝑉𝐷𝑅1
𝑉𝑆 − 𝑉𝐷

 ( 1 ) 

𝑅1 is a known resistance (220Ω), 𝑉𝑆 is the voltage provided by the Arduino (3.3V), 𝑉𝐷 is the voltage 

recorded and 𝑅2 is the resistance of interest. A python script was created to record the Arduino output into 

text files and as well as for post processing. The electrical connection was made by melting the end of a 

piece of wire onto each end of the samples using an injection molder piston head heated to 220°C. Great 

care was taken to minimize the amount of heat transferred to the gauge section of the sample.  

3 RESULTS AND DISSCUSION 

The results of the experiments were analyzed using a combination of the Numpy, Pandas, Scipy and 

Matplotlib modules in Python. The load and extension data generated by the Instron 5969 load frame were 

synchronized with the resistance data recorded from the Arduino. The toughness of the specimen was 

calculated from the area beneath the engineering stress vs. strain curve. The calculation of the gauge factor 

was done by fitting a linear curve to a plot of the relative change in resistance vs the strain, from which the 

slope corresponded to the gauge factor. An example of the output can be found in Figure 3. This fitted 

curve was bounded to avoid the influence from the sharp increase in resistance proceeding the failure of 

the specimen and any initial misalignments of the sample during initial loading. All data, both collected 

and calculated, can be found in Table 4. 
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Figure 3: Test data for specimen 1 (corresponding to Table 3 process conditions). The top figure 

shows the recorded data, the lower figure shows the change in the resistance against the strain. The red 

line is the fitted curve used for the calculation of the gauge factor. 

 

Table 4 Summary of measured and calculated experimental values. GF = Gauge Factor 

Specimen Resistance Peak Load 
Extension at 

Peak Load 
Toughness GF 

Width of 

fit 

 (Ω) (N) (% Strain) (kJ/m3) (ΔΩ Strain⁄ ) (% Strain) 

1 15.8 223.6 1.21 176.6 0.7154 1.10 

2 14.8 371.2 2.05 461.0 0.6498 1.97 

3 17.4 423.7 3.02 809.6 0.0314 2.08 

4 13.4 331.1 4.45 1030.9 0.2930 3.75 

5 18.8 359.2 3.45 789.4 -0.4839 2.72 

6 13.6 342.9 1.97 407.5 0.2762 1.59 

7 19.8 437.1 3.55 977.4 -0.5059 2.91 

8 18 439.5 3.49 988.5 0.1486 2.53 

 

Remark: The values reported above for specimens 5 and 7 (per process conditions of Table 3) are found 

after multiple repeated tests to ensure no structural (outlier) measurement errors. Namely, the original 

voltage data for specimen (process condition) 7 was clearly erroneous with large jumps in the data, Figure 

4b, while the data for original specimen 5, Figure 4a, exhibited a negative trend upon initial application of 

the load. None of the other specimen configurations exhibited such outlying trends. The repeated 

experiments for configurations 5 and 7 exhibited a more pronounced negative trend such as in Figure 4c 

and 4d. The trends of the repeated tests were similar, but significantly different from the all other tests. As 
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the behaviour of the initial tests was not able to be repeated by any other tests, they were seen as outliers 

and neglected. The data reported in Table 4 are based on the repeated tests for configurations 5 and 7. It is 

believed that such a negative resistance behaviour is related to one or more of the process parameters under 

scrutiny in these configurations, however the exact cause of this relationship is beyond the scope of the 

present study. 

 

a) b)  

c) d)  

 

Figure 4: Negative gauge factor behavior of configurations 5 and 7; a) configuration 5 initial data, 

b) configuration 7 initial data, c) configuration 5 repeated data, d) configuration 7 repeated data 

To compare the impact of the different process parameters on the output, the percent contribution 

was calculated for each process parameter, along with their two-way interactions (Figure 5). The higher-

level interactions account for the remaining contribution; however, these were not included in Figure 5 

because the ‘fractional’ factorial nature of the experiment would then result in aliasing of such higher-level 

interactions.  

 

 

Figure 5: Percent contributions of process parameters and their two-way interactions. A = Nozzle 

Temperature, B = Layer Height, C = Print Speed, D = Extrusion Multiplier 

3.1 Parameter Ranking 

To objectively determine the most influential parameters which can be used for further Pareto 

optimization of the sensor in a future study, a Multi-Attribute Decision-Making (MADM) methodology 

was employed. Interactions were not included in this section because interactions are not easily controlled 

0 10 20 30 40 50 60 70 80

Resistance

Peak Load

Extention at Peak Load

Toughness

GF

Width of fit

% Contribution

A B C D A+B A+C A+D B+C B+D C+D
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directly in practice. The resultant numerical values from Figure 5 are presented in Table 5 as the basis of 

the MADM problem solving (i.e. as the decision matrix). 

Table 5 Percent contributions of the alternatives with respect to the attributes for MADM 
 

Attributes 

Resistance Peak 

Load 

Extension 

at Peak 

Toughness GF Width 

of Fit 

A
lt

er
n

at
iv

es
 Nozzle 

Temperature 
7.11 3.71 5.60 6.13 0.61 2.00 

Layer Height 41.38 26.60 11.52 19.62 32.43 4.32 

Print Speed 0.22 1.65 1.28 1.07 0.01 1.38 

Extrusion 

Multiplier 
0.02 9.16 11.94 14.38 0.01 17.62 

 

For the ranking of the different parameters in Table 5 (i.e. alternatives), a series of compensatory 

MADM methods were used and the Entropy weighting (Hwang and Yoon 1981) was adapted to determine 

the relative importance of each attribute (i.e. performance measure of the sensor). The latter was done to 

make the ranking of the parameters as objective as possible and to create the largest spread of the final 

scores for ranking. The final values for the relative weights of the values can be found in Table 6. The 

calculated weights clearly prioritized the influence of the electrical performance parameters, which are most 

important in terms of the measurement properties of a strain-sensing element.  

Table 6 Attribute weights for MADM methods determined using the Entropy method 

Attributes 

 
Resistance 

Peak 

Load 

Extension at 

Peak 
Toughness GF 

Width 

of Fit 

Weights 0.259 0.117 0.057 0.079 0.356 0.131 

 

These weights were then used in Simple Additive Weighting (SAW), TOPSIS and ELECTRE 

methods (Yoon and Hwang 1995) to rank the parameters. The summary of rankings of each parameter is 

shown in Table 7, with the parameter meriting the greater investigation being ranked as ‘1’. The average 

ranking from all three MADM methods was then used as the final ranking scheme.  

Table 7 MADM summary of rankings for parameters 

Parameters SAW TOPSIS ELECTRE Average 

Nozzle Temperature 3 3 2 2.67 

Layer Height 1 1 1 1 

Print Speed 4 4 4 4 

Extrusion Multiplier 2 2 3 2.33 

 

Based on these rankings, the layer height is clearly the best candidate for further optimization of the 

sensor and the print speed is the least influential. This is in line with other researches that had found that 

the layer height has the largest impact on the properties of FDM manufactured parts (Mohamed et al. 2016). 

This held true for almost all parameters including 41% contribution to the change in resistance. The 

extrusion multiplier and the nozzle temperature are the next ranked parameters, 2nd and 3rd respectively. 

Based on the values in Table 5, the nozzle temperature has a larger impact on the electrical properties 

(Resistance and Gauge Factor) and the extrusion multiplier has a larger impact on the mechanical 

properties. This is possibly due to the fact that extrusion multiplier is related to the amount of material 

extruded, resulting in a probable relation to the load bearing area and porosity of the sample, thus 

influencing the mechanical properties. The dominant effect of the nozzle temperature on the electrical 

properties is likely due to either the distribution of the conductive graphene in the extrusions or the bonding 
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between the extrusions. Clearly the print speed has the least impact on the output parameters in this study. 

The print speed would impact the rate of cooling of the polymer by effecting the amount of time that the 

hot nozzle is in its proximity. This could affect the degree of crystallization of the polymer, but that does 

not appear to be the case with the tested blend of graphene and PLA. 

4 CONCLUSION AND FUTURE WORK 

The study presents initial efforts towards the development of self-sensing textiles using FDM 

manufacturing. The purpose of the current study was to determine the influence of FDM process parameters 

on the mechanical and electrical properties of a 3D printed sensor material (based on ASTM D638 Type V 

specimens) made of filaments of a commercially available polymer blend of PLA and graphene. The 

percent contribution of each process parameter, as well as their two-way interactions, was calculated. The 

percent contributions showed that some interactions may be significant when the main parameters are not. 

This indicates that future work could include all parameters, but that these parameters do not require equal 

levels of resolution, specially given that interactions are difficult to control in practice for optimization 

purposes. 

A set of compensatory Multi Attribute Decision Making (MADM) methods along with objective 

weighting was then used to compare the various parameters’ overall ranking in terms of their concurrent 

effects on different mechanical and electrical properties. From these MADM methods, the layer height was 

found to be overall the most influential factor, followed by the extrusion multiplier, nozzle temperature, 

and finally the print speed with the least overall influence. The dominating influence of the layer height is 

consistent with other studies focusing on mechanical properties and different materials. This study also 

showed that some of the selected parameters can produce a negative gauge factor response, and may be due 

to the interaction of these parameters and the rasterization of the specimen, although the exact cause of this 

response requires further investigation. Such future investigations should also include the evaluation of 

other CPC’s, further analysis of the process parameter influence, characterization of the completed textile 

and development of a methodology for the implementation of FDM manufactured self-sensing textiles. 
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