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ABSTRACT 

The three-phase integrated flow-stress model has been developed at UBC to overcome the 

drawbacks of the decoupled approach. The flow-compaction and stress-deformation steps are integrated 

into a unified framework to capture the interplay between different physical phenomena in a seamless 
manner. The model defines solid displacement, fluid and gas velocity, and fluid and gas pressure (within 

a 𝑢 − 𝑣 − 𝑝 formulation) as unknowns and solves the system of governing equations using a mixed finite 

element method with bilinear displacement and velocity shape functions and piecewise constant pressure 
finite element spaces. However, the current model is not scalable and assumes that the pressure in the two 

flowing phases are equal. 

Experimental results show that the resin impregnation in intra-tow and inter-tow regions occurs at 

different time-scales. The dual-scale geometry of the fiber-bed results in a lagging flow-front at the 
micro-scale, entrapment of gas inside the tows, and constant intra-tow permeability upon external 

pressure. The micro-scale interaction of gas and resin plays a major role in the mentioned observations. 

This study aims at establishing a framework to extend the current Three-Phase Integrated Flow-Stress 
Model (3P-IFS) to handle both the local and global physics in their corresponding scales. This paper 

investigates the capabilities of the current model to be extended to microscale and discusses the data-

handling, boundary conditions, and checking processes to assure that the correct physics are captured by 
the numerical model. 

 

KEYWORDS: Multiscale methods, composite processing, Integrated flow-stress model, Finite 

Element Analysis 
 

1 INTRODUCTION 

The high production cost and the great risk involved in creating a new composites manufacturing 
process can be significantly mitigated using science-based simulation methods. Moreover, experts argue 

that use of models can accelerate the certification process and assist process-structure-property 

optimization. To use a simulation package for manufacturing or certification of a composite part, it should 
be able to investigate the robustness of each process, which can just be achieved through accounting for 

all the main phenomena involved during processing. Complicated interconnection of the physical 

phenomena in composite processing, significant variability of the input parameters, and the significant 

computational cost of utilizing complex simulation packages are on-going issues in research and industry. 
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While composites processing has been modelled using sequential independent sub-models for over 
two decades (Hubert, 1996; Johnston, 1997), the Integrated Flow-Stress (IFS) model for processing of 

composite materials has been developed recently (Amini Niaki, 2017, Haghshenas, 2012) to tackle the 

shortcomings of the decoupled approaches. The IFS model calculates the global parameters using a mixed 

set of phenomenological and physical models through a mixed finite element method with bilinear 
displacement and velocity shape functions and piecewise constant pressure finite element spaces (Süli, 

2013). Experimental data shows that assuming a single-phase porous medium might neglect important 

dual-scale interactions.  
The single-scale porous medium assumption considers the preform to have uniform pre-distribution 

of pores. This assumption implicitly implies that a phenomenological model for porosity is sufficient to 

describe the preform and the pores in the preform behind the flow front are fully saturated.  
Because of the dual-scale nature of the fibre mats, the resin velocity and pressure in the inter-tow 

channels are different than the intra-tow channels, which results in the presence of partially-saturated 

region behind the macroscopic flow front during resin impregnation. The multiscale nature of fabrics has 

some well-documented influence on mold-filling such as the formation of voids, the creation of a partially 
saturated region behind the flow-front, and a drop in the inlet-pressure history under the constant injection 

rate observed in 1D flow experiments (Tan & Pillai, 2012). These observations contradict the fully 

saturated region assumption behind the flow front.  
During composite processing, the configuration of the porous medium will change as a result of 

consolidation and squeeze flow. This change in configuration is different in each scale. The intra-tow 

region is compressed enough and cannot be effectively compressed any further, while empty spaces in the 
inter-tow region can be compressed further to increase the volume fraction of fibers. The dependence of 

permeability on consolidation can be defined either with a fitting parameter or by rigorous dual scale flow 

simulations. 

Entrapped air inside the preform significantly changes the permeability. The gas and resin flow in 
the local scale is usually addressed by solving the full Navier-Stokes equation, which is computationally 

costly. There is a lack of low-order local models that address gas entrapment inside the tows during the 

flow deformation process. Moreover, many of the investigations also neglected the effect of wicking and 
capillary suction at the initial stages of impregnation, when the gap pressure is small. The effect of 

capillary pressure on permeability should be addressed on the local scale.  

The temperature gradient in a dual scale medium can affect the local cure and viscosity as well as 

volatile response. Heat transfer equations should be incorporated into the model to account for those 
physics. Finally, proper validation test cases should be conducted. The sink term and dual permeability 

are usually used as fitting parameters while matching the numerical predictions with the experimental 

results, which make those values dependent on the part shape and the process configuration. 
In principle, it would be possible to capture all of the physics at the microscopic scale, but such 

models are often too complex for the analysis of large structures and produce redundant data. Multiscale 

modelling is a solution for the abovementioned problems, where microscopic and macroscopic models are 
coupled to combine the accuracy of microscopic models with the efficiency of macroscopic ones. Thus, 

the global degrees of freedoms are decreased while the important physics of the process at different scales 

are preserved. 

Different models have been introduced in the literature to account for the dual-scale physics in 
liquid composite molding (LCM) processes. Tan and Pillai coupled a coarse global mesh and a fine local 

mesh with periodic 3D unit cells of fabric to simulate the flow under isothermal and non-isothermal 

conditions (Tan & Pillai, 2012). Kuentzer et al. (Kuentzer, Simacek, Advani, & Walsh, 2006) added 1D 
elements to each node of a standard 2D or 3D mesh to represent the fibre tows. The delayed impregnation 

of the intra-tow region is included as sinks of resin in the macroscopic flow field and the global continuity 

equation has been modified to include a non-zero sink term, which is defined as a function of the rate of 
saturation. Lawrence et al. (Lawrence, Neacsu, & Advani, 2009) built on top of the abovementioned 

model and included the effect of capillary pressure as the boundary condition for the 1D element. 
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The current paper aims to establish a framework for connecting the the current global-scale IFS 
model to a local-scale model. In the next section, the governing equations of the IFS model are presented. 

Subsequently, in order to address the scalability of the model, an ABAQUS UserElement is developed. 

The shortcomings of the assumptions and available features of the UserElement directed us to an Open 

Source FE package, FEniCS. The same model is implemented in this package and results are discussed. 
Finally, a framework for connecting global- and local-scales is introduced and discussed.  

 

2 INTEGRATED FLOW-STRESS MODEL FORMULATION 

The two-phase system considers a compressible fluid phase flowing through a porous medium. The 

governing equations for this problem, including mass and momentum conservations of the system, and 

Darcy’s law creates a system of partial differential equations. While the full form of the equations, 
including the free strain terms and solidification factor, is provided in (Amini Niaki, 2017), we are using a 

simplified version here which captures the necessary interactions between the two phases.  

 

𝜵 ∙
𝛛𝒖

𝝏𝒕
+ 𝜵 ∙ (𝒗𝑓

𝑑) + (1 − 𝜑𝑓)
〈𝜌𝑠〉̇ 𝑠

〈𝜌𝑠〉𝑠
+ 𝜑𝑓

〈𝜌𝑓〉̇ 𝑓

〈𝜌𝑓〉𝑓
= 0 

∇𝑃𝑓 = −
𝜇

𝑘
𝒗𝑓

𝑑 

𝜵 ∙ 𝝈 = 𝟎 

(1) 

 

(2) 

(3) 

 

In the above equations, 𝑠 and 𝑓 indices show the solid and fluid properties, 〈𝜌𝑖〉𝑖 is the intrinsic average 

density of phase 𝑖, 𝒖 is the displacement of the solid, 𝒗𝑓
𝑑 is the Darcy velocity of the fluid phase, 𝜑𝑓 and  

𝑃𝑓 are the volume fraction  and pressure of the fluid. Moreover, 𝝈 is the total stress of the system, which 

can be determined using the Biot’s assumption 𝝈 = 𝝈′ − 𝑏𝑃𝑓𝑰. The Biot’s coefficient 𝑏 is a 

representation of the compressibility of the solid medium with respect to the grains. The effective stress is 

described using the solid constitutive model.  
 

2.1 Three-phase model 

The three-phase model has also been developed and elaborated in (Amini Niaki, 2017; Niaki, 
Forghani, Vaziri, & Poursartip, 2018). However, the interaction between the two flowing phases is not yet 

established properly and should be described as an additional equation involving the relationship between 

the pressures of the two fluids. The simplest form assumes the difference between the two pressures to be 

a function of the geometry of the contacting surfaces. At the micro-scale, Lawrence et al. (Lawrence et 
al., 2009) argued that the bubble entrapment can be modelled using the same procedure. When all the air 

escapes through the resin, resin replaces the empty region inside the tows with no resistance. Thus, the 

pressure inside the tow will remain constant and equal to the difference between the capillary pressure 
and the vent pressure. When the resin completely entraps the air, the air pressure increases as its volume 

decreases and the back pressure eventually stops the resin. They used arbitrary curves to change the tow 

pressure between these two cases based on the local saturation. 

3 IMPLEMENTATION 

The current IFS model has been implemented in MATLAB. However, it has not been scaled up to 

solve real-world structures. The scalability issue is due to the lack of tools in MATLAB for creating and 

meshing complex geometries, the lack of established features such as contact, the difficulty of modifying 
and creating nonlinear solvers, and significant workload to port the created model to the current 

commercialized advanced composites process simulation software COMPRO.  

This section describes different ways that have been tested to implement the two phase model in an 

advanced finite element package. In the first section, implementation of the model as an 𝑢 − 𝑝 ABAQUS 
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UserElement is described. Then, the 𝑢 − 𝑝 model is compared with the 𝑢 − 𝑣 − 𝑝 model, and finally, 

implementation of the 𝑢 − 𝑣 − 𝑝 model in another code, FEniCS is discussed. 

 

3.1 𝒖 − 𝒑 UserElement  

The coupled two-phase model uses a 𝑢 − 𝑣 − 𝑝 element, which has 4 nodes at its corners for the 
velocity and displacement and one node at the center for the pressure in a quadrilateral element. A new 

element can be implemented in ABAQUS using the user-defined elements (UserElement). In an 

ABAQUS UserElement, we can modify the degrees of freedom as necessary. Thus, we used the degree of 

freedom #11 to represent the fluid pressure and created a 𝑢 − 𝑝 model. In the 𝑢 − 𝑝 formulation of the 

IFS model, the velocity is calculated in the post-processing step, using the pressure field and Darcy’s law. 

A benchmark problem in porous media is the 1D consolidation with a drained top surface, which 

has an analytical solution (Verruijt, 2013). The top surface is drained, while the bottom and side surfaces 
are impermeable. Pressure is applied at the start of the analysis and the column is analyzed to obtain the 

equilibrium state. The geometry and properties of the column are shown in Figure 1. 

 

 

Table 1: Material properties of the column 

Material Parameters Value 

Young Modulus (𝑬) 100.0 𝑀𝑃𝑎 
Poisson’s Ratio (𝝂) 0.25 
Permeability (𝒌) 8.0 × 10−14𝑚2 
Dynamic viscosity (𝝁) 1.0 × 10−5𝑃𝑎. 𝑠 

 

𝑝 ̅ =
𝑝

𝑝0
 (normalized pressure) 

𝑥 ̅ =
𝑥

𝐿0
 (normalized distance) 

          Figure 1: Geometry and material properties used in modelling the consolidation of a 1D porous 

medium (column) 

 

In order to compare the pressure at different points in time, 𝐿0 is considered to be the undeformed length 

of the column. The solution of UserElement is compared with the analytical solution in Figure 2 (left). 

The normalized time is defined as 𝑡̅ =
𝑡

𝑇0
, where 𝑇0 is a unit second. The deformation and the contour of 

pore pressure of the column are shown in Figure 2 (right), which clearly shows the deformation (not to 

scale) and the dissipation of pressure in time.   

 
 

Figure 2: Comparison of analytical and numerical results for column consolidation (left), and the pore 

pressure and deformation of the column at different points in time (right) 
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The Darcy’s law requires the shape functions of pressure to be an order higher than velocity. 

Moreover, it can be shown that the Discontinuous Galerkin element of zeroth order cannot capture the 

pressure gradient effectively in a coupled analysis (Kanschat & Rivière, 2010). While the ABAQUS 

implementation enforces the conservation at the global scale, post processing the velocity does not 
enforce mass conservation strongly (i.e. it does not satisfy the differential equation for conservation of 

mass). In the following section, two methods are compared in order to quantify the effect of spurious sink 

or source terms. 
 

3.2 Mixed formulation and divergence conforming elements 

As mentioned before, solving the flow-compaction equation by eliminating the velocity (i.e. in the 
Poisson’s form), demands the velocity to be calculated in the post processing step. The calculated velocity 

does not satisfy the conservation equation locally (at the element level), which results in spurious source 

and sink terms. If the continuity equation is included in the system of equations and matching function 

spaces are used for velocity and pressure, the mass conservation will be enforced weakly in each element. 

However, a divergence conforming 𝐻𝑑𝑖𝑣(Ω) space will enforce the mass conservation strongly, meaning 

the divergence of velocity is pointwise zero inside the mesh cells. Raviart-Thomas elements are 

divergence conforming and have been tested extensively for the simulation of coupled Darcy flows 
(Kanschat & Rivière, 2010). 

In order to quantify the effect of weakly enforced mass conservation, the flow inside a rigid porous 

medium with the spatial change of permeability is modeled using Darcy’s law and mass conservation in 

the Poisson’s form (−
𝑘

𝜇
𝚫𝑃 = 0) and mixed form (𝑝 − 𝑣). The geometry of the problem and the 

permeability of the medium are shown in Figure 3.  

 

 
 
 

{−
𝑘

𝜇
𝛁𝑃 = 𝒗

𝛁 ∙ 𝒗 = 0

         𝑖𝑛    Ω = [0, 1]2 

 

𝐵𝐶: 𝑃 = 1 − 𝑥 𝑓𝑜𝑟 (𝑥, 𝑦) ∈ 𝜕Ω 
 

𝑘 = max {10−5𝑒
−(

𝑦−0.5−0.05 𝑐𝑜𝑠(10𝑥)
0.2

)
2

, 10−7} 𝑚2 

𝜇 = 10−5 𝑃𝑎. 𝑠  
 

                Figure 3: The permeability field on the unit square geometry used for comparison of errors 

 

The problem is simulated using different mesh sizes. The results obtained from a 64 × 64 mesh are 
shown in Figure 4. As is clear from Figure 4 (right), the magnitude of velocity between the two methods 

can vary up to 3%. In order to get a better understanding of the dependency of error in velocity for 

different mesh sizes, the least-square error is compared in Table 1, which shows a linear reduction in error 

as we refine the mesh. 

Table 2: Least square error in velocity in different mesh configurations 

 𝟖 × 𝟖 𝟏𝟔 × 𝟏𝟔 𝟑𝟐 × 𝟑𝟐 𝟔𝟒 × 𝟔𝟒 𝟏𝟐𝟖 × 𝟏𝟐𝟖 

Error 0.0926 0.0480 0.0242 0.0121 0.0060 

 

The mass conservation is very important when the solution is passed to the microscale. Small errors 

in the global scale might have a significant effect on the microscale calculations. The next section 
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describes the implementation of the IFS model in an open-source finite element package with valuable 
numerical analysis tools to capture the physics. 

 

  
Figure 4: The pressure field using mixed method (left) and the difference in velocity between the two 

methods (right) 

 

3.3 FEniCS implementation 

FEniCS is an open-source computing platform for solving partial differential equations with a 

library of elements, a remarkable potential to tackle multi-phase problems with mixed spaces, and parallel 
processing capabilities. Since we showed the benefits of using mixed elements in the flow problem, we 

are interested in implementing the IFS model in FEniCS. While FEniCS has powerful capabilities in 

assembling and solving any system of PDEs, other parts of the problem, including complex material 
models in composite laminates, has to be implemented.  

In this section, a simple orthotropic material model for the porous solid is coupled with a 

non-solidifying single-phase fluid. The angle-laminate geometry (Haghshenas, 2012) is used as a case-

study. The material properties and micromechanics model is adopted from (Amini Niaki, 2017). 
Nonlinear elasticity model of fibers and viscoelastic behavior of resin are not yet implemented for 

simplicity. Also, the volume fraction is not updated as draining takes place and is kept constant at 42% at 

all times. The load is applied as a ramp for the whole analysis time, which is 200 minutes. The top and 
left surfaces are permeable, while the bottom and right surfaces are impermeable. Since all of the details 

are not implemented in this model, the results are considered as qualitative representation for the time 

being.  
The displacement contours in Figure 5 (right) show the corner-thickening. The pressure distribution 

in Figure 6 (left) shows that the loading is transferred to fluid pressure at the impermeable surface, while 

the permeable surface maintains the pressure as specified by the boundary condition (𝑝 = 0). Also, the 

velocity magnitude in Figure 6 (right) shows the fluid flux out of the system through the right boundary.  

  

Figure 5: The geometry and loadings (left) adapted from (Haghshenas, 2012), and the predicted 
displacement magnitude (right) at the end of the loading step 

𝜑 = 0.42 
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As shown in this case-study, the FEniCS implementation provides promising results for the IFS 
model. The implemented elements and modules in this package, while enhancing the accuracy and 

reliability of the results, enable us to add new features to the current model. As mentioned in the 

introduction, multiscale analysis of the manufacturing process provides new opportunities to include 

inter-tow physics in the model. The following section briefly discusses a framework for this purpose. 
 

  
Figure 6: The pressure contours (left), and the velocity distribution (bottom-right) at the end of the 

loading step 

 

4 MULTISCALE FRAMEWORK 

The linking between different scales in a multi-scale problem can be established in different ways 

(Kanouté et al. 2009). The assumption for the macro- and micro-scale as well as the link between these 

two should emphasize the  distinguishing and important physics at each scale.  

The presented multiscale framework, graphically represented in Figure 7, has the following 

properties: 

1. The scales are coupled through transferring boundary conditions. At each time-increment, the 

macro-scale model is solved using the global mesh while the micro-scale model is solved in the 

activated elements. 
2. The microscale model is activated for elements with two fluid phases and when the element is 

completely saturated, the microscale model will be deactivated. 

3. The macro-scale model includes the flow-compaction, stress-deformation, and heat-transfer 

physics, while the microscale model just considers the flow and capillary effects. 
4. The inter-tow flow of resin is modelled as added sink terms to the local mass conservation 

5. The capillary pressure and gas captivation is modelled as a pressure boundary condition applied 
to the local elements.  

 
Figure 7: The multiscale framework for coupling inter-tow and intra-tow physics 
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5 CONCLUSION 

This paper discusses the possibility to add multi-scale physics to the current integrated flow-stress 

(IFS) model for process simulation of composites. The multi-scale properties of the fiber bed result in 

small-scale physics that cannot be captured in the global domain. In order to simulate capillary effects, 

consolidation-dependent permeability, and gas captivation, as well as their effect on the global response 
of the structure during processing, an effective and efficient multi-scale model should be developed. The 

first part of this paper discusses the methods to implement and extend the current model within 

sophisticated finite element packages. Two common formulations for flow in an elastic porous medium 
are compared and the higher accuracy of a divergence conforming Darcy flow formulation is 

demonstrated. The second part of this paper demonstrates the capabilities of an open-source finite element 

package in handling the IFS formulation and provides a preliminary framework for adding micro-scale 
physics to the current model. The desired properties of a multiscale IFS model are highlighted and a 

framework for implementing those physics is proposed. Work is currently underway by the authors to 

develop the multi-physics, multi-scale finite element framework and use it to predict the response of real-

world composite processing experiments.  
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