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ABSTRACT 

During the processing of unidirectional pre-impregnated composite laminates, an important step is the debulking 
and compaction of the layers to remove gaps between and within the laminae.  During this step, the resin is heated 
up and can flow relative to the fibre bed.  Consequently, the fibre bed elastic properties play a significant role in 
determining the pressure sharing between the fibre bed and flowing resin, and the shear deformation of the fibre 
bed. The flow of resin through the fibre bed typically modeled as Darcy flow, and the fibre bed properties of interest 
include the fibre bed compaction curve, which is a stiffening curve relating the fibre bed normal stress to the normal 
strain or volume fraction.  Although this can be determined experimentally, Cai and Gutowski [1] developed a simple 
and elegant model based on a network of wavy fibres.  This model predicts the transverse through-thickness 
stiffness E33, which is then used to determine the load sharing between fibre bed and resin at any instant during 
flow.  However, the Gutowski model effectively ignores the fibre bed shear modulus.  This is problematic, as 
although the original models were developed for flat plates, their meaningful use is for predictions for configured 
structure.  Currently, this is done independently of the fibre bed compaction curve by introducing an assumed shear 
modulus, typically taken to be a constant and back-calculated or fitted to experiments. In this work, we show how 
a simple modification of the assumed fibre bed representative volume element allows the simultaneous prediction 
of the full stiffness matrix, with a correlated response between the through-thickness stiffness 𝐸33 and the shear 
moduli.  This allows for a proper physics and mechanics-based approach to representing all the fibre bed elastic 
properties coherently. 

1 INTRODUCTION 

Unidirectional pre-impregnated composite laminates consist of tightly packed fibres that are wavy in general. Any 
applied load to the prepreg is shared between the fibre bed and the resin. In the early stage of the composite 
processing, the thermosetting resin is fluid and therefore can flow between the fibres (i.e. through the fibre bed). 
In an ideal system of perfectly straight fibres, or the case of a very low fibre volume fraction, where there is minimal 
interaction between fibres, the fibre bed carries insignificant load through-thickness [2]. In reality, the fibres are 
wavy, and packed at a high volume fraction. The interaction of the tightly packed wavy fibres results in a significant 
elastic response of the fibre bed that determines the share of pressure that fibres and the resin are carrying. The 
share of the stress can be stated [2] in an equilibrium equation  𝝈 = �̅� − 𝑰𝑃 where 𝜎 is the effective stress state of 
the composite, �̅�  is the effective stress of the fibre bed, 𝐼  is the identity matrix and 𝑃  is the resin pressure 
(compressive is positive). The effective stress of the fibre bed (�̅�), which is a function of fibre bed deformation, is 
an important input to flow-compaction models [3]–[8].  
 

mailto:anoush.poursartip@ubc.ca


CANCOM2022 ‒ CANADIAN INTERNATIONAL CONFERENCE ON COMPOSITE MATERIALS 

2 
 

The relationship between the effective stress, and the deformation of the fibre bed is determined either 
experimentally, or theoretically. Springer et al (1983) [9], [10] were among the first ones who explored the flow and 
compaction of composites during processing. They assumed a sequential compaction model in which the external 
load is carried by only the resin, and the compaction occurred progressively downward in the laminate layers. Dave 
et al (1987) [11], [12] and Gutowski (1985) [13] on the other hand considered a squeeze sponge model for the 
laminate in which the applied pressure is shared between the fibre bed and the resin. Gutowski et al (1987) [14] 
investigated the relationship between the fibre bed compaction and the stiffness considering the squeeze sponge 
model. Their experimental work demonstrated that the fibres gradually carry an increasing portion of the applied 
load. The nonlinearity of the fibre bed compaction curve is a result of the interactions of wavy fibres. Initially, the 
fibres are wavy, and touching lightly at random points. As the external pressure increases, the fibres straighten, and 
the number of contact points between them increases. Therefore, the elastic modulus of the fibre bed increases to 
a point that the general response of the fibre bed is equal to the individual fibres. Smith and Poursartip (1993) [15] 
compared the sequential and sponge approaches, and concluded that the squeeze sponge model is more accurate 
in describing the entire compaction process, and the sequential compaction model is a special case of the squeeze 
sponge model. Later, Hubert and Poursartip (2001) [2] developed an efficient experimental method for direct 
measurement of the fibre bed compaction curves, which later they used to develop a two-dimensional flow model 
for the process simulation of complex shape composite laminates [3].  
 
Alongside the experimental approaches to study the fibre bed compaction behavior, attempts were made to predict 
the fibre bed compaction behavior using analytical models. Focusing on mostly flat panels, and bleed systems, 
Gutowski et al. (1992) [16], [17] developed an analytical model to describe the response of an aligned, lubricated 
fibre bundle to the external stress. The three-dimensional model allowed cylindrical modes of elastic dilation and 
only viscous deformation for the shearing, claiming that the shear deformations are negligible for autoclave 
processing. Hubert et. al. (1999) [3] used Gutowski’s method in combination with soil mechanics problems where 
the shear response is taken to be elastic to come up with a rate-independent elastic constitutive relation for the 
fibre bed. Their constitutive model considered the elastic modulus of fibre bed in the direction of the fibres to be a 
function of the fibre elastic modulus, while the transverse elastic modulus is measured experimentally. The value 
for the shear modulus is not measured, however they showed the importance of including it for the accurate 
prediction of deformation of non-flat parts. Later compaction models for the fibre bed either considered the shear 
modulus of the fibre bed to be zero or a small number just to stabilize the computations[18]–[21]. 
 
New processes and complex part geometries require a micromechanical model that is capable of calculating the 
material properties for all directions, including shear deformation. In this work, we show how a simple modification 
of the assumed fibre bed representative volume element allows the simultaneous prediction of the full stiffness 
matrix, with a correlated response between the through-thickness stiffness E33 and the shear moduli.  This allows 
for a proper physics and mechanics-based approach to representing all the fibre bed elastic properties coherently. 

2 An extended analytical model for fire bed 

2.1 Formulation  

 
The formulation of the unit cell developed by Gutowski and Cai [1] is based on a curved beam that is touching at 
multiple points (Figure 1). The fibres are assumed as curved beams with the following shape: 
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𝑦 =
𝑎0

2
(1 − 2 cos (

𝜋𝑥

𝐿
)) ( 1 ) 

  

Where 𝑎0  is the height of a curved fibre element, and 𝐿  is the length of the volume element containing 
representative fibre (Figure 1). 
 

 

Figure 1: a) Wavy fibres touching each other, and b) a unit cell made of a single fibre in the original Gutowski and Cai model 
[21] 

 
The unit cell  Figure 2b is arranged in a square pattern, which predicts the bulk compression curve based on the 
volume fraction based on the following formulation: 
 

𝜎𝑏 =
3𝜋𝐸

𝛽4

(1 − √
𝑉𝑓

𝑉0
)

(√
𝑉𝑎
𝑉𝑓

− 1)

4 ( 2 ) 

  
 

Where 𝑉𝑓  is the fibre volume fraction, 𝑉0 is the initial fibre volume fraction for the unstressed bundle, 𝑉𝑎  is the 

maximum available fibre volume fraction, and 𝛽 = 𝐿/𝑎  is correlated to fibre waviness. However, this model 
considers zero shear modulus for the fibre bed, and assumes that the prepreg shear deformation is viscous. This 
assumption works well for the flat panels and bleed systems, but experimental evidence shows the shear modulus 
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of the prepreg plays a significant role in defining the geometrical accuracy of complex parts, and controlling new 
processes such as forming and ATL process. 
 
The deformation matrix for compression of a single wavy fibre in the original Gutowski, Cai model is: 
 

{
Δ𝑥
Δ𝑦

} =

[
 
 
 
𝑎2𝐿

8𝐸𝐼
+

𝐿

𝐸𝐴
−

𝑎𝐿2

4𝜋2𝐸𝐼

−
𝑎𝐿2

4𝜋2𝐸𝐼

𝐿3

192𝐸𝐼 ]
 
 
 

{
𝑃𝑥

𝑃𝑦
} ( 3 ) 

 
Where Δ𝑥  is the deformation of the fibres in the fibre direction, and Δ𝑦  is the deformation in the waviness 
amplitude direction. We are interested in Δ𝑦, and assume that Δ𝑥 = 0: 
 

0 = (
𝑎2𝐿

8𝐸𝐼
+

𝐿

𝐸𝐴
)𝑃𝑥 −

𝑎𝐿2

4𝜋2𝐸𝐼
𝑃𝑦 ( 4 ) 

Δ𝑦 = −
𝑎𝐿2

4𝜋2𝐸𝐼
𝑃𝑥 +

𝐿3

192𝐸𝐼
𝑃𝑦 

( 5 ) 

 
 
 
Inserting 𝑃𝑥 from eq. ( 4 ) to eq. ( 5 ) we have: 
 

Δ𝑦 = −(
𝑎2𝐿

8𝐸𝐼
+

𝐿

𝐸𝐴
) +

𝐿3

192𝐸𝐼
𝑃𝑦 ( 6 ) 

  
The two fibres become flatter as they are compressed, thus 𝑎 changes based on Δ𝑦, 𝑎0 = 𝑎 + Δ𝑦 . Since we are 
interested in compaction in the direction of the waviness, a change in naming Δy = U, and 𝑃𝑦 = 𝑃𝑈 is considered. 

It should be mentioned that 𝛽 = 𝐿/𝑎 is assumed to be constant during compression, similar to the original Gutowski 
and Cai formulations. The modified formulation becomes: 
 

𝑃𝑈 =
𝐼 π4((𝑎0 − U)2𝐴 + 8 𝐼)𝐸U

(𝑎0 − U)3β3((𝑎0 − U)2(π4 − 96)𝐴 + 8 𝐼 π4)
 ( 7 ) 

 
 
We introduce an angle 𝜓, to the original curved fibre unit cell to account for the shear modulus of the fibre. The 
angle 𝜓 in the Extended Fibre bed Model (EFM) is originated from considering the arrangement of the fibres in non-
square packing and assumes that the wavy fibres are in touch with this angle. Considering just two fibres, Figure 2b 
shows the interactions in 2-3 plane, and  Figure 2c demonstrates the same interaction looking at the view line. From  
Figure 2c, 𝑑 = 𝑎0 + 2𝑟𝑓, where 𝑑 can be calculated from fibre volume fraction: 

 

𝑑 = √𝜋𝑟𝑓
2/2𝑉𝑓𝑐𝑜𝑠(𝜓) sin(𝜓)  ( 8 ) 
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The compaction of two wavy fibres can be modeled using nonlinear springs with a force-deformation behavior 
derived from the Gutowski and Cai formulation for the compaction of wavy fibres. Using the formula for the force-
deformation relation of two fibres from eq. ( 7 ), the interaction of the fibres is modeled as nonlinear springs in the 
2-3 plane, Figure 2d. 

 

Figure 2: Extended fibre bed model, a) 3D representation, b) 2D unit cell definition, c) fibre interactions and parameters 
looking at view line, d) representation of the fibre bed microstructure in 2D, modeling the fibre interactions with nonlinear 

fibres. 

 

2.2 Compaction behavior 

 
In this section, a combination of two unit-cells that form a triangular pattern is considered. Applying a deformation 
𝑈𝑐  to a triangular unit cell in the original configuration (specified with dashed lines in Figure 3) results in a 
compressive deformation shown with a solid line in Figure 3. 
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Figure 3: Forces for a triangular unit cell under compression 

 
Applying the compressive deformation 𝑈𝑐, the cell angle after deformation: 
 

𝜂 = tan−1 (
𝑠𝑖𝑛(𝜓)𝑑 − 𝑈𝑐

 𝑐𝑜𝑠(𝜓)𝑑
) ( 9 ) 

  
The deformed cell side is: 
 

𝑑′ =
𝑑𝑐𝑜𝑠(𝜓)

𝑐𝑜𝑠(𝜂)
 ( 10 ) 

  
 
The change in the distance between fibres maps to the deformation of the connecting nonlinear spring:  
 

𝑈 = 𝑑 − 𝑑′ = 𝑑 (1 −
𝑐𝑜𝑠(𝜓)

𝑐𝑜𝑠(𝜂)
) ( 11 ) 

  
This deformation is used in eq. ( 7 ) to find the corresponding force, 𝑃𝑈. The vertical compression force of the two 
𝑃𝑈 is equal to 𝑃𝑐 = 2𝑃𝑈sin (𝜂). The derivative of the analytical formula for the compaction pressure with respect to 
the compaction strain is calculated to determine the evolution of 𝐸33 modulus. 

2.3 Shear Behavior 

 
For calculating the shear modulus of the fibre bed at different compaction levels, two steps of calculation are 
required. In the first step, a compaction displacement (𝑈𝑐) is applied to the top of the cell. The new height of the 
triangle cell is equal to the initial height, minus the applied deformation.  
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ℎ′ = d sin(𝜓) − 𝑈𝑐 ( 12 ) 
  

After the compression step, a shear deformation 𝑈𝑠 is applied to the top of the cell. Considering the final deformed 
configuration shown as a solid line triangle in Figure 4a , the angles for the left side, 𝜅, and the right side, 𝜁, of the 
triangle can be calculated as follow: 

𝜅 = atan(
ℎ′

𝑑𝑐𝑜𝑠(𝜓) + 𝑈𝑠
) ( 13 ) 

 

𝜁 = atan(
ℎ′

𝑑𝑐𝑜𝑠(𝜓) − 𝑈𝑠
) ( 14 ) 

  
The final length of the connecting springs for the left and right side, a and b can be found as follow: 
 

𝑏 =
ℎ′

sin(𝜅)
=

d sin(𝜓) − 𝑈𝑐

sin(𝜅)
 ( 15 ) 

  

𝑐 =
ℎ′

sin(𝜁)
=

d sin(𝜓) − 𝑈𝑐

sin(𝜁)
 ( 16 ) 

 
Using the deformed lengths, the deformation of each of the springs are: 
 

𝑈𝑏 = 𝑑 − 𝑏 ( 17 ) 
  

𝑈𝑐 = 𝑑 − 𝑐 ( 18 ) 
  

Substituting eq. ( 17 ) and eq. ( 18 ) into eq. ( 7 ),  the forces generated by each of the springs, 𝐹𝑏, and 𝐹𝑐 can be 
calculated. The projection of these forces in the horizontal direction determines the tangential traction force: 
 

𝐹𝑠 = 𝐹𝑏 cos(𝜅) − 𝐹𝑐cos (𝜁) ( 19 ) 
  

The traction force can be used to calculate the shear modulus of the unit cell: 
 

𝐺23 =
ℎ′𝐹𝑠

2𝑈𝑠𝑑𝑐𝑜𝑠(𝜓)
 ( 20 ) 

  
 For finding the shear modulus at different levels of compaction, 1% shear deformation is applied following different 
initial compaction deformation.  
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Figure 4: Two steps of applying shear deformation, a) deformations and b) resultant forces 

2.4 Results and Discussion: 

 
Considering the T800S/NAT1 prepreg system for this study [22], the initial 𝑉𝑓 = 0.575, and the fibre radius is  𝑟𝑓 =

2.5𝜇𝑚. Considering the unit cell angle 𝜓 = 60°, which results in a uniform hexagonal fibre distribution, the unit cell 
parameter 𝑑 = 6.2 𝜇𝑚 based on eq. ( 8 ), and 𝑎0 = 𝑑 − 2𝑟𝑓 = 1.3𝜇𝑚. To determine the effect of volume fraction, 

a series of compaction deformations are applied to the unit cell, and then the response of the material is measure 
by small shear/compressive perturbances. At this point,  𝛽 is the only parameter that is left that can be found by 
fitting the model to the experiments, however, here the effect of a range of  100 < 𝛽 < 400  based on the 
experiments [16], are presented in Figure 5.  
 

 

Figure 5: 𝑮𝟐𝟑 and 𝑬𝟑𝟑 based on the Extended Fibre bed Model for different values of 𝛽 parameter 
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Figure 5 demonstrates a dependency of the shear and compaction moduli on the fibre volume fraction. Both moduli 
are increasing exponentially as the fibre bed is compressed. Increasing the value of  𝛽 while 𝑎0 is constant has an 
inverse effect on both 𝐺23 and 𝐸33. Given the formula 𝛽 = 𝐿/𝑎 , to increase 𝛽 while keeping 𝑎 constant, the value 
of 𝐿 should increase. This means that a fibre with constant waviness amplitude now has a longer length. The longer 
the fibre is, the less leverage it has to withhold applied pressure, thus resulting in lower moduli. This is embedded 
in eq. ( 7 ) where the pressure has an inverse relation with 𝛽3. Since the fibre in the unit cell is rotated along with 
the fibre axis by 𝜓 = 60 the change in the general fibre stiffness, affects both 𝐺23 and 𝐸33  simultaneously. The 
model demonstrates the ability to connect the stiffness matrix components to state variables such as fibre volume 
fraction as well as providing enough degrees of freedom to adjust the model to the experimental data in follow-on 
work.  

3 Conclusions 

Pre-gelation, even though the fibre bed is not very stiff, it plays a big role in the processing behavior of the prepreg 
material. We have shown that current models do not consider a full stiffness matrix for modeling the fibre bed, 
primarily by ignoring the shear modulus. A new extended micromechanical model based on Gutowski’s original 
concept of wavy fibres is introduced that allows the simultaneous prediction of the full stiffness matrix, specifically, 
the compression and shear moduli, during the debulking process. The framework developed in this paper will serve 
as a basis for further study of the fibre bed behavior during composites processing. 
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