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ABSTRACT 

Sheet Moulding Compound (SMC) materials, renowned for their excellence in automotive and other industries due 
to their exceptional chemical and mechanical properties, have undergone advancements to refine their 
characteristics through innovative resin formulations and additives. However, obtaining precise formulation details 
remains challenging. This study addresses this gap by developing a cure kinetic model for a carbon fiber SMC 
material using Differential Scanning Calorimetry (DSC), without requiring detailed formulation information. 
Leveraging a neural network approach, the research aims to optimize manufacturing processes and enhance 
component properties. Experimental characterization, including isothermal and dynamic tests, facilitated the 
development of a robust regression model, exhibiting high agreement between predictions and observed data (R-
squared value of 1 for train and test sets), as well as successful interpretation of unseen data and interpolation on 
the experimental conditions. These findings underscore the model's practical applicability in SMC manufacturing, 
opening avenues for further research in enhancing predictive accuracy and exploring alternative modeling 
techniques. 

1 INTRODUCTION 

Sheet Moulding Compound (SMC) materials have gained prominence in various industries, particularly automotive 
applications, due to their remarkable chemical and mechanical properties, alongside their efficient compression 
moulding manufacturing process [1]. Recent efforts by manufacturers and researchers have been directed towards 
enhancing SMC properties through the exploration of new resin formulations, integration of innovative 
reinforcements and additives, and the refinement of manufacturing processes to meet the evolving industry 
requirements  [2], [3]. Central to optimizing SMC properties is a comprehensive understanding of cure kinetics, 
which governs the material's final properties and performance [4]. Traditionally, cure kinetics modeling has relied 
on empirical equations and experimental data obtained through techniques such as Differential Scanning 
Calorimetry (DSC) [5]. However, these conventional methods often necessitate detailed knowledge of the material's 
formulation, which may not always be readily available due to proprietary constraints. To address this challenge, 
advanced computational techniques, such as neural network modelling, have emerged as promising avenues for 
predicting cure kinetics without necessitating precise formulation details. Neural networks, renowned for their 
ability to discern intricate patterns from data, offer a flexible and data-driven approach to modelling cure kinetics, 
rendering them well-suited for applications in material science and engineering [6], [7]. 
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The objective of this study is the development of a neural network-based cure kinetic model tailored to SMC 
materials. Leveraging neural network methodologies, the aim is to accurately predict the cure kinetics of SMC 
materials, thereby streamlining manufacturing processes and elevating component properties. 

2 METHODOLOGY 

A vinyl ester carbon based SMC, underwent extensive characterization despite its undisclosed formulation and the 
unavailability of resin separated from fibres provided by the manufacturer. Utilizing a modulated scanning 
calorimeter (MDSC) Q100 from TA Instruments, both isothermal and dynamic tests were conducted. Samples 
ranging from 5-12 mg of the compound were placed in aluminum hermetic pans and subjected to testing within a 
nitrogen environment. Isothermal tests were conducted at temperatures of 110 °C, 120 °C, and 130 °C, while 
dynamic tests were executed at constant heating rates ranging from 2.0 to 20.0 °C/min, covering a temperature 
range from 0 °C to 220-240 °C. Each experiment was conducted three times to mitigate variability. From these 
repetitions, two representative sets were selected and averaged for model training. The third repetition was set 
aside as a new dataset to assess the model's performance with unseen data. 
 
Subsequently, the heat flow 𝑑𝐻/𝑑𝑡 was extracted from the MDSC datasets. The cure rate 𝑑𝛼/𝑑𝑡 was determined 
using Equation 1. The total heat of reaction 𝐻𝑡 and the degree of cure 𝛼 were crucial parameters, with the latter 
calculated by integrating the heat flow over the exothermic reaction time limits 𝑡0, 𝑡, as defined by Equation 2. 
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For dynamic tests, 𝐻𝑡 was straightforwardly calculated by integrating the area under the heat flow reaction curve. 
In contrast, in isothermal tests, complete cure might not be achieved. Therefore, this value was determined as the 
combination of the heat observed during the isothermal scan 𝐻𝑖𝑠𝑜 and the residual heat from a subsequent dynamic 
scan 𝐻𝑟𝑒𝑠 , 𝐻𝑡 = 𝐻𝑖𝑠𝑜 + 𝐻𝑟𝑒𝑠. 

2.1 Neural network 

A supervised learning (SL) approach employing a backpropagation neural network (BPNN) was employed. This 
architecture ensures full connectivity between neighboring layers while avoiding connections within the same layer. 
 
Data pre-processing has been demonstrated to enhance the accuracy and efficiency of training [8]. The input data 
𝑋, including isothermal and dynamic averaged experiments, was normalized by shifting and scaling 𝑋 to its mean 
value 𝑋̅ and standard deviation 𝜎 as in Equation 3. 

𝑋𝑛𝑜𝑟𝑚 =
𝑋 − 𝑋̅

𝜎
 (3) 

Four input features were selected: time 𝑡 , temperature 𝑇 , heating rate 𝑑𝑇/𝑑𝑡  or isothermal temperature 𝑇𝑖𝑠𝑜 
depending on the test type, and the degree of cure 𝛼. The cure rate 𝑑𝛼/𝑑𝑡 was chosen as the output feature and 
scaled to the range [0,1]. The dataset 𝑋 was randomly partitioned into train (80%) and test (20%) sets, with an 
additional validation set for monitoring model performance during training. 
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A sequential model with five layers was built, incorporating three hidden layers with 12 neurons each, and it is 
schematized in Figure 1. Hyperbolic tangent (tanh) activation function 𝑓1 = tanh(𝑥) was chosen for the hidden 
layers, and a linear function 𝑓2 = 𝑥 for the output layer [9]. The input data is fed into the input layer neurons, then 
it goes sequentially through the hidden layers until it reaches the output layer: this process is called forward 
propagation. The output of each neuron is combined to produce the total output of the neural network 𝑦̂, as a 

function of the weights  𝑊𝑘, the output 𝑍𝑘 and the biases 𝑏𝑘 of the layer 𝑘. If 𝐾 is the index of the output layer, 𝑦̂ 
can be calculated from Equation 4, where 𝑓𝐾 is the activation function: 

𝑦̂ = 𝑍𝐾 = 𝑓𝐾(𝑊𝐾 ⋅ 𝑍𝐾−1 + 𝑏𝐾) (4) 

 

Figure 1. Neural network architecture. 

 
After obtaining 𝑦̂, i.e. after completing 1 epoch, the loss (error) between the predicted and the actual target value 
is calculated. Backpropagation calculates the gradients of the loss with respect to the weights and biases of the 
network, and then used to update the weights and biases using optimization algorithms such as stochastic gradient 
descent (SGD) or its variants. This iterative process of forward and back propagation continues until the network 
converges to a satisfactory solution or until a predefined number of epochs is reached. Adam optimizer was chosen 
due to its adaptative learning rate strategy, which ensures a rapid and stable convergence. The mean squared error 
(MSE) was selected as the loss function, which is commonly used for regression tasks due to its robustness in 
handling outliers. Mean absolute error (MAE) was employed as a metric to monitor the training process.  

3 RESULTS AND DISCUSSION 

The maximum number of epochs is set to 600, after previously training until 1500 and determining no significant 
improvement nor in the loss or validation loss values. The loss as a function of the number of epochs was captured 
and it is displayed in Figure 2, where the actual training ended after 555 epoch, from the monitoring validation loss 
value, which indicates the absence of overfitting. Values for MSE and MAE are shown in Table 1. 
 

Table 1. Validation and training error for best epoch. 

Epoch Training MSE Training MAE Validation MSE Validation MAE 

555 6.13 ⋅ 10−6 1.5 ⋅ 10−3 2.44 ⋅ 10−6 8.27 ⋅ 10−4 
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Figure 2. Neural network model convergence behaviour. 

After training, a linear regression was used to evaluate the R-squared value (𝑅2) for both the test and train sets, 
along with new datasets (no averaged repetitions). These new datasets comprised experiments conducted under 
similar conditions (same time and temperatures) but were not part of the model's training data. The results are 
depicted in Figure 3. For the datasets used in the training process, including both the train (Figure 3. (a)) and test 
(Figure 3. (b)) sets, an 𝑅2 value of 1 was obtained, indicating excellent agreement between the data and the model 
predictions. In the case of the new dataset (Figure 3. (c)), an 𝑅2 value of 0.98 was achieved, demonstrating a slightly 
lower but still strong agreement compared to the test and train sets.   
 

   
(a) (b) (c) 

Figure 3. Linear regression for (a) train set, (b) test set, (c) new dataset. 

 
Additionally, the cure rate was plotted against the degree of cure for the test set (Figure 4) and the new dataset 
(Figure 5), encompassing both isothermal and dynamic tests. 
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Figure 4. Predicted cure rate as a function of degree of cure for test set. 

  

Figure 5. Predicted cure rate as a function of degree of cure for new dataset. 

 
To assess the model's interpolation capacity, two new experiments were conducted using new experimental 
conditions: one isothermal test at 𝑇𝑖𝑠𝑜 of 115°C and one dynamic test with a heating rate 𝑑𝑇/𝑑𝑡 of 18°C/min. The 
results, shown in Figure 6, reveal R-squared values of 0.95 and 0.94 respectively, indicating good agreement 
between the observed data and the model's predictions.  
 

  
(a) (b) 

Figure 6. Cure rate as a function of degree of cure for, (a) 18 °C/min dynamic ramp experiment, (b) T = 116 °C isothermal 
experiment. 

 
These findings suggest that the neural network model trained on the initial dataset generalizes well to new data, as 
evidenced by the high R-squared values obtained for the new datasets. Furthermore, the successful interpolation 
of the model to predict the cure rate under different experimental conditions underscores its robustness and utility.  
However, to deepen our understanding and potentially enhance the model's predictive performance, it may be 
beneficial to explore alternative modelling techniques. One intriguing avenue is to integrate the model to generate 
𝛼 and 𝑑𝛼/𝑑𝑡 with only time (𝑡) and temperature (𝑇) as inputs. This could be achieved through an iterative approach 
with an initial state or by employing a secondary auxiliary model. By doing so, it would be possible to assess how 
errors propagate through the model and identify the most effective method for predicting 𝛼 and its derivative based 
solely on time and temperature inputs. This approach would not only provide valuable insights into the model's 
limitations and sources of uncertainty but also offer opportunities for refinement and optimization. Furthermore, 
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integrating such functionality into the model could enhance its practical utility, particularly in scenarios where direct 
measurement of 𝛼 and 𝑑𝛼/𝑑𝑡 may be challenging or impractical, which is the norm in industrial work. 
In summary, while the current linear regression model demonstrates promising performance, exploring innovative 
approaches such as integrating 𝛼 and 𝑑𝛼/𝑑𝑡 prediction capabilities based solely on time and temperature inputs 
could lead to significant advancements in predictive accuracy and model applicability. 

4 CONCLUSIONS 

In conclusion, the study demonstrated the effectiveness of a linear regression model in predicting cure rate under 
varying experimental conditions. The high R-squared values obtained for both the training and new datasets indicate 
strong agreement between the model predictions and observed data, underscoring the model's robustness and 
generalization capability. Moreover, our findings suggest avenues for further investigation and model enhancement. 
Exploring alternative modeling techniques, such as nonlinear regression or machine learning algorithms, could offer 
opportunities for improving predictive accuracy and capturing complex relationships within the data. 
Additionally, integrating the model to predict 𝛼 and 𝑑𝛼/𝑑𝑡 based solely on time and temperature inputs presents 
an intriguing direction for future research. This approach not only facilitates error analysis and propagation but also 
enhances the model's practical utility in diverse experimental settings. 
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