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ABSTRACT 

Curved fibres in fibre reinforced composites are being used more frequently due to the development of advanced 
manufacturing and analysis techniques. Using curved fibres improves the elastic properties of composites, 
particularly their stiffness distribution, compared with straight fibres. To exploit the potential of curved fibres, many 
fibre orientation optimization methods have been proposed. In this paper, a contour-based fibre mapping (CBFM) 
method is explored to represent fibre paths by the two-dimensional contours of a three-dimensional generating 
function. The generating function consists of the sum of radial basis functions (RBFs) that produce curved fibres and 
a linear function, which is an oblique plane, that produces straight fibres. The contours, and hence the fibres, are 
smooth, continuous and require minimal post-processing. The fibre orientation is updated by following the 
gradients of the objective, stiffness, with respect to the parameters of the RBFs, which are the design variables. One 
example, a cantilever subject to bending, is discussed to demonstrate the capability of the CBFM method to optimize 
fibre patterns efficiently. 

1 INTRODUCTION 

Due to the superior performance of carbon fibres as light-weight structures compared with conventional metallic 
alloys, the demand for composite materials in many fields is increasing. Carbon fibre reinforced polymers (CFRPs) 
have been widely used in the aerospace, automotive and marine industries [1]. With the development of advanced 
manufacturing technologies, tailoring of fibre directions is more accessible. Automatic fibre placement (AFP) allows 
fibres to be positioned at nearly arbitrary angles [2]. Variable stiffness design has been conducted on different 
composite structures for multiple optimization purposes, such as improving stiffness and maximizing buckling load. 
Studies indicate that a well-designed fibre configuration can significantly enhance the mechanical performance of 
fibre reinforced composites [3–5]. 
 
The first step in fibre orientation design is to find an appropriate method to parameterize fibre paths. A commonly 
adopted method is to define fibre orientations at discrete points [6] using the finite element method (FEM). In each 
element, the fibres are considered locally straight. This discrete method is mathematically convenient but 
computationally expensive if the number of elements is large, because the fibre angle in each element is a design 
variable. Moreover, the resulting fibre paths are not continuous, which means further post-processing is needed. 
Alternatively, continuous fibre parameterization approaches guarantee fibre continuity and improve computational 
efficiency. Continuous fibres can be modelled using analytical functions [7], such as spline curves, trigonometric 
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function, cubic NURBS curves [8] and other functions. Other implicit functions using lamination parameters [9] and 
streamlines [10] also generate continuous fibres in the optimization. Continuous methods typically require fewer 
design variables compared to discrete methods, resulting in lower computational costs. However, the selection of 
a reference path severely constrains the possible fibre configurations that can be represented. 
 
Based on studies of discrete and continuous fibres, it is appealing to incorporate the merits of both methods. 
Arbitrary fields of fibres, including straight and curved ones, should be generated by a compact method while 
guaranteeing fibre continuity. The method should have the capability to generate complex configurations with a 
simple model. One potential approach is to use the two-dimensional contours of three-dimensional functions to 
represent fibre paths. The contours generated are inherently continuous, which is ideal for representing curved 
fibres. The parameters of the higher dimensional functions control the configuration of fibres and are the design 
variables in optimization. The idea originates from the level set method [11], and is studied using different forms of 
generating functions. Honda and Narita [12] use a cubic polynomial function and its contours to represent 
curvilinear fibres, in order to maximize the fundamental frequency of a laminated composite plate. A set of equally 
spaced fibres can be generated by different constant level set values, which is proposed to optimize fibre 
orientations for minimizing compliance by Brampton et al. [13]. Tian et al. [14] develop a parametric divergence-
free method to describe the fibre angle arrangement using over a thousand basis functions. 
 
A contour-based fibre mapping (CBFM) method is proposed in this paper, which uses a three-dimensional function 
to represent fibres in a two-dimensional space through the summation of several compactly supported radial basis 
functions (CS-RBFs) and an oblique plane to generate both straight and curved fibres. The fibre configuration is 
optimized by updating shape parameters in the generating function using a gradient descent method. A common 
optimization case is then studied using this method. 
 

2 Contour-based Fibre Mapping 

2.1 Generating function 

This CBFM method is based on the level-set method, which depends upon a generating function in three dimensions 
(x-y-z) and its projection on two dimensions. The contours are considered as fibre paths for their smooth and 
continuous characteristics. The generating function 𝜓 is a linear summation of several basis functions 𝜙 with shape 
parameters 𝐴: 

𝜓(𝒙) =  ∑ 𝐴𝑖𝜙𝑖(𝒙),

𝑁

𝑖=1

 (1) 

where 𝜙𝑖 is the 𝑖-th basis function of total number 𝑁, 𝒙 = (𝑥, 𝑦) are the coordinates of any points in the design 
domain, and 𝐴𝑖  is the shape parameter that changes the amplitudes of basis functions. Many choices of basis 
functions are possible; here, radial basis functions are selected for their smoothness and facility in representing 
many other types of functions. The value of a radial basis function at 𝒙 is   

𝜙𝑖(𝒙) = 𝜙𝑖(||𝒙 − 𝒙𝒊||), (2) 

which is determined by its distance to the centre of basis function 𝒙𝒊 =  (𝑥𝑖, 𝑦𝑖). The distance in the 𝑥 − 𝑦 plane is 

𝑅𝑖 =  ||𝒙 − 𝒙𝒊|| = √(𝑥 − 𝑥𝑖)2 + (𝑦 − 𝑦𝑖)2.  
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Figure 1. Example of a function in three dimensions and its contour in two dimensions.  

 
A compactly supported RBF from Wendland [15] is chosen for the construction of such basis function. The change 
of one basis function will only influence a limited region, which tends to improve the convergence in optimization. 
Wendland’s compactly supported RBF is 

𝜙𝑖(𝒙) = {(1 −
𝑅𝑖

𝑊𝑖
)

4

(4
𝑅𝑖

𝑊𝑖
+ 1) , if 

𝑅𝑖

𝑊𝑖
≤ 1

0,                                                otherwise

  (3) 

where 𝑊𝑖 is the width of radial basis function 𝑖. This formulation ensures that the change in one basis function has 
no influence outside its local region. Here the width 𝑊𝑖 is fixed for each function and only the amplitudes 𝐴𝑖  are 
design variables.  

2.2 Fibre orientation 

The configuration of fibre contours is determined by the design parameters in the generating function. To find the 
optimal fibre configuration, the relationship between the design parameters and contours is required. The design 
space is discretized into elements with FEM and the fibre angle at the centre of each element is the element angle, 
as shown in Figure 2.  The fibre angle at an arbitrary point (𝑥𝑐 , 𝑦𝑐) in the domain of the 𝑗-th element is computed 
using the gradients of the generating function: 

𝜃𝑗 = arctan (−
𝜕𝜓

𝜕𝑥
/

𝜕𝜓

𝜕𝑦
 ).  (4) 

 

The fibre angle is between (−
𝜋

2
,

𝜋

2
]. This angle is used in calculating the elastic properties of the composite and the 

sensitivity analysis during optimization.  
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3 Optimization 

3.1 Objective 

To improve the mechanical properties of fibre reinforced composites, the in-plane stiffness is maximized with fibre 
orientation optimization. In other words, the purpose of the optimization is to minimize the compliance of a 
composite laminate. For a structure in equilibrium, define the compliance as: 

𝑐 = 𝑓𝑇𝑑 = 𝑑𝑇𝐾𝑑, (5) 

where 𝑓 is the load vector, 𝑑 is the nodal displacement vector and 𝐾 is the global stiffness matrix.  

3.2 Initialization 

The first step in optimization is to select an initial guess for the design variables. It has been shown that a good 
starting point for gradient-based optimization improves the optimization efficiency [16]. It is known that the 
alignment of fibre directions and local principle stress directions reduces compliance [7]. The initialization of the 
fibre pattern is also the initialization of the design parameters, which are the location of RBF centres and the 
amplitudes of the RBFs. A simple method is to place RBFs in grids with uniform spacing and equal amplitudes. This 
method is straightforward and easy to implement, but the initial configuration is not ideal for many cases. An oblique 
plane 𝜓0 is introduced to generate unidirectional fibres as initial patterns while setting all RBF amplitudes to zero. 
The generating function is 

𝜓 = 𝜓0 + ∑ 𝐴𝑖𝜙𝑖(𝒙)

𝑁

𝑖=1

=  𝑥 ∗ tan(𝜃0) − 𝑦 +  ∑ 𝐴𝑖𝜙𝑖(𝒙)

𝑁

𝑖=1

. (6) 

𝜃0  is the angle of unidirectional fibres. The introduction of unidirectional fibres as an initial guess has many 
advantages. The amplitudes of the radial basis functions can initially be zeros, without extra computational cost. For 
many cases, a configuration with straight fibres is close to the optimal solution and will provide fast convergence. 
The oblique plane both scales the solution and provides uniqueness; without the oblique plane linearly scaling all 
the RBF amplitudes by the same value would generate the same contour pattern. In the following optimization, the 
enhanced generating function is applied.  
 

3.3 Procedure 

The optimization is: 
1. Initialize the fibre configuration with unidirectional fibres of angle 𝜃0 and amplitudes 𝐴𝑖 = 0. 
2. Perform finite element analysis with an anisotropic composite model. 
3. Compute the sensitivity of the compliance with respect to the design variables 𝐴𝑖. 
4. Update 𝐴𝑖  and the fibre angle 𝜃𝑗 in each element. 

5. Check if the stopping criteria is satisfied. If not, return to step 2 and continue. 
6. Obtain the optimized fibre configuration.  

 

4 Numerical Results 

A common structural optimization case that contains bending and shear is a cantilever beam with the left side fixed 
and a load applied on the top right, shown in Figure 3. The mechanical properties of the composite are 𝐸1 = 150Gpa, 
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𝐸2 = 20Gpa, 𝐺12 = 7Gpa, 𝜈12 = 0.3, based on the properties of common carbon fibre composites. The initial fibre 
angle is 1° after searching for a range of angles from 0 to 180° that provides the lowest compliance.  

 

Figure 2. Load and boundary conditions of a cantilever beam. 

 
Figure 3 shows the optimization result for the cantilever beam using 48 RBFs placed uniformly. The initial fibre 
pattern is represented in (a) by unidirectional fibres. After optimization, curved fibres appear in (b). The curvilinear 
fibres reduce the compliance 19% from 0.2914 (Nm) to 0.2359 (Nm). Compared to the same structure but with 
isotropic material, which has a compliance of 0.3888 (Nm), variable stiffness composite structures improve the 
mechanical properties.  
 
The optimization result verifies the capability of the CBFM method to generate complex and physically relevant fibre 
configurations, including unidirectional fibres and curved fibres. With a small number of design variables, the 
compliance is minimized after 306 iterations. The continuous and smooth fibres are favorable for manufacturing 
with proper post-processing. Additional constraints to avoid gaps and overlaps will be discussed in future work.  
 

  
(a)                                                                                                   (b) 

Figure 3. The optimization result of a cantilever beam after 306 iterations (50 seconds). (a) is the initial fibre pattern with 1° 
fibres, and (b) is the optimized contour with compliance reduced by 19%. The blue lines are fibre contours, and black dots are 

the locations of RBF centres. 

 

5 Conclusion 

A contour-based fibre mapping method is proposed to ensure fibre continuity and computation efficiency by using 
a generating function with shape parameters to adjust fibre configurations. The function consists of an oblique plane 
to generate straight fibres and radial basis functions to generate curved fibres locally. The contours of the higher 
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dimensional function correspond to the fibre paths in a two-dimensional plane. A gradient descent algorithm is used 
to update the design variables, which are the amplitudes of the basis functions.  
 
The fibre configuration is updated by adjusting the design parameters in the generating function, which reduces the 
amount of design variables compared to discrete methods, thus improving computational efficiency. The 
optimization result of a common cantilever beam shows that CBFM method is capable to generate both straight and 
curved fibres. Furthermore, this method enables the optimized fibre patterns to improve stiffness compared to the 
same structure with isotropic materials or straight fibres. The smoothness and continuity of contours are ideal for 
representing fibres without substantial post-processing, and manufacturing constraints will be added later to avoid 
defects, such as gaps and overlaps. 
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