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ABSTRACT 

In the automotive industry, the final part quality is paramount to achieving the required mechanical properties. The 
part quality is determined during the manufacturing process and is dependent upon the manufacturing parameters 
used during production. One way to better define the set parameters that can deliver the highest part quality is by 
using Machine Learning (ML) models. For this study, flat plaques were produced by the Wet Compression Molding 
(WCM) process, and their respective manufacturing parameters such as thermal gradients, demolding 
characterization, and pressure profile were used as training data for the ML models. The ML models include Random 
Forest (RF), Gradient Boosting (GB), Multi-linear (MLR), and Support Vector Regression (SVR). Each model’s 
predictive capabilities are validated by combining data obtained experimentally. Subsequently, the predictions are 
made to lessen resource-intensive experimental testing in future trials. This study aims to identify optimal 
processing parameters using the model to expedite the product development process, which currently employs a 
trial-and-error method. 

1 INTRODUCTION AND STATE OF THE ART 

WCM is a manufacturing process that can offer cycle times of less than five minutes, which is ideal for mass 
production in the automotive industry. In recent years, predictive ML models have become crucial, providing 
researchers with generalized models trained on experimental data, and ensuring high prediction accuracy. Once 
validated, coupling such a model with a new manufacturing process, material, or dataset is fast and reliable, 
eliminating the need for an inefficient trial-and-error approach to determine desired processing parameters. 
 
When choosing a robust model, consideration of data types, desired outcomes, and computational time for training 
and testing must be at the forefront. In 2019, Golkarnarenji et al. [1] compared SVR with Artificial Neural Networks 
(ANNs) and determined that SVR outperformed ANNs for Young’s modulus prediction with an average error of less 
than ±2.4%. In 2021, Chahboun et al. [2] compared MLR, SVR, and RF, for the hourly prediction of the power 
produced by photovoltaic solar panels. SVR demonstrated superior accuracy with a coefficient of determination 
(𝑅2) of 96% and a root mean squared error (𝑅𝑀𝑆𝐸) of 0.39 kW. In 2023, Omar et al. [3] evaluated ML models 
for crack propagation, with GB performing best compared to RF and SVR models. The objective of this study is to 
develop four ML models for the comparison and prediction of CFRP mechanical properties of WCM parts based on 
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manufacturing parameters, and the flexural and interlaminar shear strength results supplied by the University of 
Windsor and the University of Waterloo. 

2 MACHINE LEARNING MODELS 

For this study, four models were trained and tested based on the following techniques: RF, GB, MLR, and SVR. These 
ML models were developed using input-output pairs composed of manufacturing parameters and experimental 
results obtained from mechanical testing. The model architecture and performance metrics are provided in Figure 
1. 
 

 

Figure 1: ML model architecture 

Following pre-processing, the independent features with the highest correlation to part quality were chosen for 
model training. For each model development, 70% of the data was used for training, and 30% for testing the model. 
RF employs ensemble learning by averaging predictions from multiple decision trees trained on 𝑘 samples from the 
dataset, where 𝑘 is a hyperparameter chosen by the developer to reduce overfitting and enhance robustness. RF 
performs effectively on both large and small datasets but can be computationally expensive. GB sequentially builds 
trees to correct errors made by previous ones, refining predictions iteratively by training on residuals. While GB 
handles complex relationships, GB is prone to overfitting and requires careful tuning. MLR predicts a dependent 



 
CANCOM2024 ‒ CANADIAN INTERNATIONAL CONFERENCE ON COMPOSITE MATERIALS 

3 
 

variable based on multiple independent variables by fitting a linear equation, offering simplicity but assuming a 
linear relationship, which may not always hold true. SVR finds a hyperplane in 𝑁-dimensional space, where 𝑁 is 
defined by the number of features in the dataset. SVR represents the relationship between variables, aiming to 
minimize error and maximize margin but may be sensitive to kernel choice and be computationally expensive. 
Subsequently, each model undergoes fine-tuning through hyperparameters, intricately steering the algorithm's 
learning trajectory and wielding considerable influence over the model's behavior. The models were then assessed 
based on prediction accuracy before being integrated into the system. 

3 MATERIALS AND METHODOLOGY 

3.1 Materials 

For this study, sixty-seven panels were manufactured with bindered, unidirectional non-crimp fabric (UD-
NCF), PX35-UD300 from Zoltek Corporation [4], and the resin EPIKOTE TRAC 6150 by Westlake Epoxy [5]. These 
panels were produced by using a 100 ton Wabash or a 25 000 kN hydraulic Dieffenbacher press with parallelism 
control, reaching a maximum closing speed of 800 mm/s. Additionally, the flat plaques analyzed presented 
two stacking sequences of [0/90]s and [0]8 and dimensions of 550 x 900 𝑚𝑚2 and 300 x 300 𝑚𝑚2 , respectively, 
as shown in Error! Reference source not found.. Note the initial and secondary resin dispersion regions and i
nstitutions. 710 samples received a pre-activated binder the remaining 35 samples were not activated or 
were unbindered. 

3.2 Methodology 

To better analyze the influence of the resin area on the mechanical properties, the plaques were 
sectioned into initial resin dispersion regions (regions A and C), and secondary resin dispersion regions 
(regions B, D, E, and F through J). 
 

 

Figure 2: CFRP flat plaque dimensions and test sample locations 
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745 samples were tested for flexural modulus, maximum flexural strength, and strain at break or interlaminar shear 
stress. An MTS Criterion Model 43 and Quasi-static testing frame followed ASTMs D7264 and D2344, respectively. 
The features were evaluated using the SHAP (SHapley Additive exPlanations) method to provide insights into the 
contribution of each feature to the model's prediction. Positive SHAP values indicate a feature's positive 
contribution to the prediction, increasing the output value, and the opposite for negative values. Zero values signify 
minimal influence on the prediction.  SHAP provided insights into the overall behaviour of the model and was applied 
to the model with the highest 𝑅2 test value. Concurrently, the nominal, ordinal, and continuous data were pre-
processed in Python© v. 3.10, normalized, and encoded to ensure proper weighting and outlier management. 
Libraries such as SHAP, Seaborn, Sklearn, Numpy, Pandas, Statistics, and Matplotlib provided correlation and 
analysis tools, and evaluation metrics to visualize the model comparisons. 

4 RESULTS 

Table 1 presents the outcomes forecasting the maximum ILSS or the utilization of the binder in relation to the 
independent variables. Following training on 70% of the data, the model undergoes validation using undisclosed 
test data. In both scenarios, the RF model demonstrated superior performance, achieving a 98.28% accuracy rate in 
predicting maximum ILSS based on the test data. In Case #2, the RF model exhibited a 99.97% accuracy rate in 
predicting binder usage on the test data. It is noteworthy that predictions for maximum flexural strength, as well as 
resin dispersion regions, also attained RF accuracies of 97% or higher. A model demonstrating training and testing 
accuracies of 90% or higher is deemed competent, while a model with an accuracy of 95% or greater is regarded as 
high fidelity. 

Table 1: Training and testing results by ML model 
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The evaluation metrics utilized to assess the disparity between observed and predicted values consist of the mean 
absolute error (𝑀𝐴𝐸), mean squared error (𝑀𝑆𝐸), and coefficient of determination (𝑅2). They were determined by 
the following equations:  

𝑀𝐴𝐸 =  
1

𝑛
∑|𝑦𝑖 − �̂�𝑖|,

𝑛

𝑖=1

               𝑀𝑆𝐸 =  
1

𝑛
∑(𝑦𝑖 − �̂�𝑖)2,

𝑛

𝑖=1

           𝑅2 = 1 −
∑(𝑦𝑖 − �̂�)2

∑(𝑦𝑖 − �̅�)2
(1) 

 
where �̂� was the predicted value of 𝑦 and �̅� was the mean value of 𝑦. Once optimized, the RF model predicted 
feature contribution for unseen inputs. Table 2 illustrates the maximum strength case where Tbefore, resin 
temperature, and resin set time are 79.11% of the contribution to the predicted strength. 

Table 2: Input parameter feature importance (%) 

  Location Resin 
temp. 

Mold 
temp. 

Resin Set 
Time 

Mold Curing 
Time 

Tbefore Degree Predicted 
Max. Strength 

Input (feature) E 60 110 0 300 114.45 1 356.63 MPa 

Contribution 
(%) 

5.89% 14.95% 6.48% 20.20% 2.37% 43.96% 6.09% 

 
Additionally, a SHAP evaluation was conducted to ascertain significance. Figure 3 visualizes the distribution and 
density of SHAP values corresponding to features as they relate to the maximum ILSS. 

 

Figure 3: SHAP values for feature contribution to maximum ILSS 

The SHAP values were calculated from the following equation: 
 

ɸ𝑖(𝑣) =  ∑ 𝑆 ⊆ 𝑁{𝑖} 
|𝑆|! (|𝑁| − |𝑆| − 1)!

|𝑁|!
[𝑣( 𝑆 ⋃ {𝑖}) − 𝑣(𝑆)] (2) 
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where ɸ𝑖(𝑣) is the SHAP value of feature 𝑖, 𝑣(𝑆) is the model’s prediction when considering the feature subset 𝑆, 
and 𝑁 is the set of all features. For the maximum ILSS prediction, the inputs with the highest impact were the 
unbindered plaques, plaque location F, and binder inactivated plaques. For the maximum flexural strength 
prediction, the inputs with the highest impact were mold temperature, resin set time, and resin temperature. When 
predicting the use of binder, the inputs with the highest impact were the mold temperature and mold curing time.  

5 DISCUSSION AND FUTURE WORK 

Based on the preceding analysis, the RF model emerges as the most effective predictor due to its ability to mitigate 
overfitting and tune the hyperparameters using a randomized grid search technique instead of a trial-and-error 
method. The RF model is recommended for cases involving continuous or ordinal input parameters, continuous 
outputs, and regression analysis needs. It is recommended that at least two data sources be considered for studies 
of this type due to the increase in testing accuracy from 22.61% to 98.28%. The feature importance and SHAP 
significance played a role in determining the optimal parameters and their respective contributions. The optimal 
parameters for maximizing ILSS were a mold temperature of 122.5°C, zero resin set time, the secondary resin 
dispersion region, unbindered, or binder-activated plaques. For maximizing flexural strength, optimal parameters 
were a resin temperature of 50°C, mold temperature of 110°C, zero resin set time, the initial resin dispersion regions, 
and the binder-activated plaques. When predicting binder, the outcome relied heavily on mold temperature and 
curing time. These results can be validated with a sensitivity analysis in the future. 
 
In conclusion, researchers can readily deploy this model to forecast the chosen response variables for a set of 
features not included in the training set. As additional mechanical testing, such as tensile or flexural, becomes 
available, the model can be adapted to evolving industry requirements. With an expanded training set, the reliance 
on resource-intensive experimental testing for composites manufactured using WCM will diminish.  
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