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ABSTRACT 

Discontinuous-fibre reinforced polymer matrix composites (DFR PMCs) are increasingly used in the automotive 
industry to achieve lightweight design of vehicles. The fibre distribution within the DFR PMCs has a strong influence 
on their mechanical properties and therefore the characterization of the fibre distribution is key to the mechanical 
property predictions of the DFR PMCs. Currently, the fibre distribution within DFR PMCs is commonly characterized 
separately by the fibre orientation distribution and the fibre length distribution, while the fibre packing states are 
rarely addressed. The objective of this study is to develop a characterization framework that can spontaneously 
address the fibre packing states, the fibre orientation distribution, and the fibre length distribution within the DFR 
PMCs. The new framework is based on the concept of fibre cell. The distribution aspects of each fibre are described 
by the properties of its fibre cell so that the fibre distribution within the whole fibre domain can be characterized 
solely based on the fibre cell properties. In addition, the correlation between the fibre distribution characterized by 
the new framework and their corresponding material properties are established using an artificial neural network. 

1 INTRODUCTION 

In recent years, discontinuous-fibre reinforced polymer matrix composites (DFR PMCs) are increasingly adopted in 
the automotive industry to achieve lightweight vehicle designs. The fibre distribution within the DFR PMCs has a 
strong influence on their mechanical properties [1,2].  The multiscale finite element analysis is commonly used to 
predict the mechanical properties of DFR PMCs. Specifically, representative volume elements (RVEs) are used to 
compute the homogenized material properties based on the microscale fibre distribution at a local level. Then, 
macroscale analysis can be performed at the component level based on the homogenized material properties at the 
local level provided by the RVEs. Nevertheless, as RVEs are usually finite element based, their computational cost is 
very high and constructing a RVE for each different microscale fibre layout is therefore unrealistic. To reduce the 
computational cost of the RVEs, surrogate models are usually created based on a RVE database. The surrogate 
models predict the homogenized material properties of a given RVE based on the similarities between the fibre 
distribution within the given RVE and the fibre distribution within the RVEs in the database. An accurate 
characterization of the fibre distribution is therefore key to the performance of the surrogate models. From the 
literature, the fibre distribution within DFR PMCs is characterized by three major aspects, namely, the fibre volume 
fractions, the fibre orientations and the fibre lengths [3,4]. There is no established method to characterize the fibre 
packing states within the DFR PMCs. Besides, all fibre distribution aspects are characterized separately, while the 
links between each aspect are rarely studied. In this paper, a new method is proposed to characterize the fibre 
distribution within DFR PMCs. Compared with traditional characterization methods, the proposed method can 
address the fibre packing states in addition to the three major fibre distribution aspects. Besides, all fibre distribution 
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aspects are characterized in a joint manner unlike the traditional methods which characterize each fibre distribution 
aspect separately. Furthermore, the proposed characterization method is integrated with an artificial neural 
network (ANN) to acquire the correlation between the fibre distribution and the homogenized elastic modulus, so 
that the ANN can later be used as a surrogate model to provide fast homogenized elastic modulus predictions based 
on the fibre distribution information. 

2 SAMPLE GENERATION 

In this study, the framework developed by Omairey et al. is used to compute the homogenized elastic modulus of 
RVEs with different fibre distribution [5]. The surface mesh interpolation method proposed by Nguyen et al. is also 
implemented to impose the periodic boundary conditions on the RVEs [6]. Both the fibres and the matrix are 
modelled as isotropic material. The elastic modulus and the Poisson’s ratio are 350 GPa and 0.27 for the fibres and 
2.1 GPa and 0.39 for the matrix. The RVE database was formed by generating 4400 RVEs. Among them, 3400 RVEs 
contained randomly distributed unidirectional (UD) fibres along the X-axis with a constant aspect ratio of 7.5, which 
means the only aspects that can differentiate these RVEs are their fibre volume fractions and their fibre packing 
states. The remaining 1000 RVEs contained randomly distributed non-unidirectional (non-UD) fibres with varying 
fibre lengths, which represent more realistic fibre distribution scenarios. The homogenized elastic modulus along 
the X-axis, 𝐸11, as illustrated in Figure 1, was computed for each RVE to label its homogenized elastic modulus. 
During this study, the RVE database was divided into a training set, a validation set, and a test set. The training set 
and the validation set was used for the model development, and the test set was used to evaluate the model 
performance. 
 

  

Figure 1. RVE with unidirectional fibres of identical length (left) and non-unidirectional fibres of varying lengths (right). 

3 FIBRE DISTRIBUTION CHARACTERIZATION 

3.1 Fibre Cell Construction 

For each fibre, a fibre cell was constructed using Voronoi diagram [7]. As shown in Figure 2 with fibre cells marked 
in different colours, the boundary of each fibre cell is in the middle between its enclosed fibre and the neighbouring 
fibres. With fibre cells constructed, the packing state of each fibre is described by the size of its cell, the shape of its 
cell, and its relative location within its cell.  
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Figure 2. Visualization of fibre cells. 

3.2 Fibre Cell Parameterization 

To describe the fibre cells in a quantitative manner, the fibre cell properties are parameterized into 10 dimensionless 
parameters: the size of the fibre cell is defined by one parameter, the relative location of the enclosed fibre is 
defined by three parameters, and the shape of the fibre cell is defined by six parameters. Specifically, as 
demonstrated in Figure 3, the size of the fibre cell is defined by the local fibre volume fraction, 𝑥𝑙𝑜𝑐𝑎𝑙 𝑉𝐹, using 
Equation 1. A fibre cell tends to have a high local volume fraction when its enclosing fibre has a large size or is closely 
surrounded by the neighbouring fibres. The relative location of the enclosed fibre in the fibre cell is described by 
three parameters: the fibre centroid shift,  𝑥𝑐𝑒𝑛𝑡𝑟𝑜𝑖𝑑 𝑠ℎ𝑖𝑓𝑡 , the fibre centroid shift angle theta,𝜃,  and the fibre 

centroid shift angle phi, 𝜑. The fibre centroid shift is defined using Equation 2, a fibre cell tends to have a larger 
centroid shift when the included fibre is closer to its neighbouring fibres in a certain direction, and the direction is 
defined by the fibre centroid shift angle theta and phi. The shape of the fibre cell was parameterized using a 
convolutional neural network (CNN) encoder trained via contrastive learning [8]. Specifically, the fibre cell was 
transformed into a 3D image first and then parameterized into six shape parameters, 𝑥𝑠ℎ𝑎𝑝𝑒 1~𝑥𝑠ℎ𝑎𝑝𝑒 6, using the 

CNN encoder. The shape parameters will have the same values if two fibre cells have an identical shape, and the 
differences between the shape parameters increase with the disparities between the shapes of the fibre cells. In 
this way, the shapes of the fibre cells can be compared quantitatively. 

 
Figure 3. Fibre cell parameterization. 



CANCOM2022 ‒ CANADIAN INTERNATIONAL CONFERENCE ON COMPOSITE MATERIALS 

4 
 

 

𝑥𝑙𝑜𝑐𝑎𝑙 𝑉𝐹 =  
𝑉𝑜𝑙𝑢𝑚𝑒𝑓𝑖𝑏𝑟𝑒

𝑉𝑜𝑙𝑢𝑚𝑒𝑓𝑖𝑏𝑟𝑒 𝑐𝑒𝑙𝑙

 (1) 

𝑥𝑐𝑒𝑛𝑡𝑟𝑜𝑖𝑑 𝑠ℎ𝑖𝑓𝑡 =
𝐿𝑐𝑒𝑛𝑡𝑟𝑜𝑖𝑑

3

𝑉𝑜𝑙𝑢𝑚𝑒𝑓𝑖𝑏𝑟𝑒 𝑐𝑒𝑙𝑙

 (2) 

 

3.3 Fibre Cell Clustering 

In an equivalent manner to the fibre orientation and length characterization, the fibre cells within a RVE can be 
characterized by clustering the fibre cells of similar properties into a single group. The fibre orientation and length 
characterization are both based on one-dimensional data; therefore, the clustering can be done linearly. However, 
it is not feasible to cluster fibre cells linearly because fibre cells are described by 10 parameters and therefore have 
a much higher dimensionality. The k-means clustering algorithm [9], which clusters data points of high 
dimensionalities based on their Euclidean distances in the high-dimensional space, was implemented to divide fibre 
cells into different clusters based on their properties. As different fibre cell parameters could have different degrees 
of impact on the homogenized elastic properties, all fibre cell parameters were normalized into the same scale and 
then assigned with weight factors to control the clustering outcomes. The number of clusters can be defined based 
on the needs of the users, the fibre cells can be categorized more finely by increasing the number of clusters, while 
the computational cost of the clustering will also rise. Considering the RVEs in the database include up to 69 fibres, 
the number of clusters is defined to be 60 in this study to sufficiently differentiate the fibre cells in each RVE. 

4 MODEL IMPLEMENTATION 

With the fibre distribution inside the RVEs characterized by the distribution of fibre cells, the correlation between 
the fibre cell distribution and the homogenized elastic modulus of the RVEs can be acquired using an ANN [10]. The 
schematic of the machine learning (ML) framework, which includes the k-mean clustering algorithm and the ANN, 
is shown in Figure 4. Firstly, fibre cells are constructed for the RVEs in the training and the validation set, and a CNN 
encoder is trained using these fibre cells. Then, the fibre cells in the RVEs from the training and the validation set 
are parameterized using the CNN encoder. Weight factors were applied to the fibre cell parameters, and the k-
means clustering was applied to divide the fibre cells into 60 clusters based on their weighted parameters. With the 
clusters assigned for the fibre cells, the distribution of the fibre cells in each RVE can be represented as a histogram, 
each bin in the histogram represents the appearance frequency (density) of a certain fibre cell type in the RVE. Then, 
the correlation between fibre cell distribution and the homogenized elastic modulus of the RVE was obtained by 
training an ANN. Lastly, the differential evolution was applied to find the optimum weight factors for the fibre cell 
clustering that can minimize the error of the ANN [11]. 
 
After the optimum weight factors are obtained, the fibre distribution within any RVE can be characterized by its 
fibre cell distribution and the ANN can provide an instant prediction of its homogenized elastic modulus based on 
its fibre cell distribution.  
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Figure 4. Framework of the ML model for instant homogenized elastic modulus predictions. 

 

5 RESULTS 

Two case studies were performed using the RVEs from the database. In the first case, 3400 UD RVEs were divided 
into a training set of 2800 RVEs, a validation set of 300 RVEs, and a test set of 300 RVEs. As the UD RVEs are only 
differentiated by their fibre volume fractions and fibre packing states, the objective of the first case was to study 
the influence of fibre packing states on the homogenized elastic modulus. In the second case, 1000 non-UD RVEs 
were mixed with 500 UD RVEs. Then, the mixed RVEs are divided into a training set of 900 RVEs, a validation set of 
300 RVEs, and a test set of 300 RVEs. The objective of the second case was to test the performance of the proposed 
framework in a more realistic fibre distribution situation. 

5.1 Unidirectional Fibres of Equal Length 

The fibre volume fractions of all the UD RVEs and their corresponding finite element analysis (FEA) computed 𝐸11 
are plotted in Figure 5. If the fibre distribution within the RVEs can be fully characterized by the fibre volume 
fractions, the fibre orientations, and the fibre lengths, the fibre volume fractions of the UD RVEs and their FEA 
computed 𝐸11 should have a trivial correlation. In other words, the plot in Figure 5 should be a perfect line. However, 
significant fluctuations in the FEA computed 𝐸11 can be observed from the plot. As all fibres in the UD RVEs have 
the same length and orientation, the variations in the FEA computed 𝐸11 can only be caused by the difference in 
the fibre packing states. In addition, the fluctuations in the FEA computed 𝐸11 are observed to be increasing with 
the fibre volume fraction as more fibres are involved in the RVEs at high volume fractions. With more fibres involved, 
there are consequently more potential variations in the fibre packing states and thus more significant variations in 
the 𝐸11. Considering the number of fibres within DFR PMCs is innumerable, it seems logical to also include fibre 
packing states during the fibre distribution characterization.  
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Figure 5. Correlation between fibre volume fraction and FEA computed 𝐸11 for UD RVE samples. 

 
To take the fibre packing states into the consideration, the ML model based on the concept of fibre cell was used to 
predict the FEA computed 𝐸11 in the test set. For comparison purposes, a linear regression model that only includes 
the fibre volume fractions was constructed based on the RVEs in the training and the validation set and also used to 
predict the FEA computed 𝐸11 in the test set. The FEA computed 𝐸11 versus surrogate model predicted 𝐸11 plots 
are shown in Figure 6 for both cases. A red line with the slope of 1 and intercept of 0 is also plotted on each figure, 
all points should be on this line if the surrogate model was perfect. 
 

  
(a) Linear model (b) ML model 

Figure 6. Correlation between FEA computed 𝐸11 and surrogate model predictions for UD RVEs samples in the test set. 
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The mean absolute relative error (MARE), as defined in Equation 3, was computed for each model to quantitatively 
evaluate their performances: 
 

𝑀𝐴𝑅𝐸 =
1

𝑛
∑

|𝐸𝑠𝑢𝑟𝑟𝑜𝑔𝑎𝑡𝑒 𝑚𝑜𝑑𝑒𝑙𝑖
− 𝐸𝐹𝐸𝐴𝑖

|

𝐸𝐹𝐸𝐴𝑖

𝑛

𝑖=1

 (3) 

 
where 𝑛 is the amount of RVEs in the test set, 𝐸𝑠𝑢𝑟𝑟𝑜𝑔𝑎𝑡𝑒 𝑚𝑜𝑑𝑒𝑙 is the surrogate model predicted 𝐸11, and 𝐸𝐹𝐸𝐴 is 

the FEA computed 𝐸11. The MARE for the linear model and the ML model are computed to be 0.043 and 0.031, 
respectively. The MARE is reduced 28% by including the fibre packing states into the fibre distribution 
characterization. The reduction in the error can also be observed from the plots in Figure 6. The results from the 
linear model scatter noticeably around the perfect prediction line due to the negligence of fibre packing states. By 
contrast, the results from the ML model are more concentrated towards the perfect prediction line. 

5.2 Non-unidirectional Fibres of Varying Length 

In the second case study, the database with mixed RVEs was used to investigate the performance of the proposed 
framework in a more general scenario. The correlation between the fibre volume fraction and the FEA computed 
𝐸11 for all RVEs in the mixed database is plotted in Figure 7. From the plot, the FEA computed 𝐸11 varies significantly 
within the RVEs with the same fibre volume fraction due to the additional fibre distribution variables (i.e., fibre 
orientations and fibre lengths). 

 
Figure 7. Correlation between fibre volume fraction and FEA computed 𝐸11 for mixed RVE samples. 

 
Based on the mixed database, the ML model was trained to predict the FEA computed 𝐸11 in the test set. The FEA 
computed 𝐸11 versus ML model predicted 𝐸11 plot is shown in Figure 8, the MARE is calculated to be 0.049. The 
MARE is increased noticeably compared with the MARE of 0.031 from the UD case. However, the mixed database 
does have significantly higher variations in the 𝐸11 due to the introduction of the new fibre distribution variables. 
Compared with the variations in the mixed database shown in Figure 7, the variations in the ML model predictions 
shown in Figure 8 is still considerably lower. In addition, it is also needed to be considered that the amount of 
training data used for the mixed case (900) is significantly smaller than the number of training data used for the UD 
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case (2800) despite the additional fibre distribution variables introduced in the mixed case. A better performance 
from the ML model can be expected for the mixed database with additional data added. 

 
Figure 8. Correlation between FEA computed 𝐸11 and ML model predicted 𝐸11 for mixed RVEs samples in the test set. 

6 CONCLUSIONS 

In this study, a new fibre distribution characterization method based on the concept of fibre cell is proposed. The 
proposed method can characterize the fibre packing states within the DFR PMCs in addition to the fibre distribution 
aspects that are usually considered such as the fibre orientations and fibre lengths, and it characterizes all the fibre 
distribution aspects jointly rather than separately by each aspect. Then, the proposed method is integrated to an 
ANN to acquire the correlation between the fibre distribution and the homogenized elastic modulus. The ML 
framework that contains the proposed characterization method and the ANN is utilized as a surrogate model to 
provide fast homogenized elastic modulus predictions based on given fibre distributions. 
 
Two case studies were performed to evaluation the proposed characterization method. In the first case study, 3400 
RVEs that contain fibres with the same length and orientation was used. The results show that the homogenized 
elastic modulus can also be influenced by the fibre packing states, and the MARE in the homogenized elastic 
modulus predictions can be effectively reduced by taking the fibre packing states into consideration during fibre 
distribution characterization. In the second case study, 500 RVEs that contain fibres with the same length and 
orientation was mixed with 1000 RVEs that contain fibres with varying lengths and orientations. The results from 
the second case study show that the proposed characterization method can be used in a more realistic scenario 
where fibres with different lengths and orientations are randomly spread in the matrix, and the ML model can 
achieve an acceptable accuracy with a limited amount of training data. Furthermore, the proposed characterization 
method is also very versatile. As all fibre cell parameters are dimensionless, it can be used for characterizations in 
different scales and inclusions of different shapes. 
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